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Summary

Helicopters have historically had significant vibration problems that require stringent design speci-

fications for helicopter subsystems. The primary source of the vibratory loads may be traced to the

main-rotor system where the rotor blades are excited by the periodic aerodynamic environment. The

resulting vibratory loads are transmitted down the main-rotor shaft into the helicopter fuselage. Gener-

ally the effects of the rotor coupling with the fuselage response are ignored in rotor system analysis.

However, these effects are often important and may significantly alter the helicopter system response.

At the Langley Research Center, an active mount rotorcraft testbed is being developed for use in the

Langley Transonic Dynamics Tunnel. This testbed, the second generation version of the Aeroelastic

Rotor Experimental System (ARES-II), can impose rotor hub motions and measure the response so that

rotor-body coupling phenomena may be investigated. An analytical method for coupling an aeroelasti-

cally scaled model rotor system to the ARES-II is developed in the current study. Models of the testbed

and the rotor system are developed in independent analyses, and an impedance-matching approach is

used to couple the rotor system to the testbed. The development of the analytical models and the cou-

pling method is examined, and individual and coupled results are presented for the testbed and rotor

system. Coupled results are presented with and without applied hub motion, and system loads and dis-

placements are examined. The results show that a closed-loop control system is necessary to achieve
desired hub motions, that proper modeling requires including the loads at the rotor hub and rotor control

system, and that the strain-gauge balance placed in the rotating system of the ARES-II provides the best
loads results.



1. Introduction

1.1. Motivation

Aeroelastic testing of model-scale helicopter rotors has been performed in the Langley Transonic Dynamics

Tunnel (TDT) since the 1960s. Since 1976, the bulk of this testing has been accomplished by using the Aeroelastic

Rotor Experimental System (ARES), a generic rotorcraft testbed designed for the performance, stability, and

dynamic loads evaluation of new rotor concepts. Currently, a second generation version of the testbed is under

development at the TDT. This testbed is called ARES-II (fig. 1.1) and has been designed for the evaluation of

dynamic loads due to rotor-body coupling and for extended rotor stability testing. To comprehend fully the

expected capability of the ARES-II, new analysis techniques must be established. These techniques will be used to

develop pretest predictions, to formulate efficient test plans, and to develop safety-of-flight criteria for safe,

practical wind tunnel testing. The goal of the current research is to develop analytical techniques for the prediction

of rotor-body coupling effects. Because the ARES-II may be used for testing of many model rotor system designs,

developing a coupling method that permits rotor-off treatment of the testbed for evaluation and verification is

/

?

Figure 1.1. ARES-II rotor research testbed.



necessary. Therefore, a method is employed which permits the development of independent math models of the

testbed and the rotor system before the rotor-to-body coupling is accomplished.

1.2. Background

Helicopters have historically had significant vibration problems. These vibrations can, at times, be severe and

are responsible for a great number of stringent design requirements for helicopter subsystems. Vibratory loads
cause crew and passenger fatigue and discomfort, reduce overall system reliability, and increase maintenance

costs. For military helicopters, vibratory response can make targeting operations difficult. Further, vibration levels

must be attenuated for the helicopter to be accepted by the public as a viable means of civil transportation.

Achievements in vibration reduction, however, are quickly being offset by the requirement for higher flight
speeds. Reductions in flight vibrations, therefore, are becoming more and more difficult to attain. For these rea-

sons, helicopter vibration reduction has been, and continues to be, a primary area of rotorcraft research in industry,
academia, and government organizations throughout the world.

In 1976, a NASA advisory council challenged the helicopter research community with the goal of "the jet

smooth helicopter," a maximum vibratory loading of 0.02g throughout the straight-and-level flight envelope. To

date, no production helicopter has achieved this goal. Advances in vibration control, however, have been signifi-
cant. Vibration levels had dropped from 0.3g-0.6g in the mid-1950s to about 0.1g in the early 1980s (ref. 1). The

methods used to attain these reduced levels of vibration have been documented by Reichert in a 1981 paper sur-

veying the developed techniques (ref. 1). Although somewhat dated, the paper presents the bulk of vibration

reduction techniques in use on production aircraft today. Furthermore, little additional progress has been made

toward achieving the jet smooth goal since Reichert's paper was published.

It is widely accepted that the primary source of helicopter vibratory loads may be traced to the main-rotor sys-
tem. Other loads exist (e.g., fuselage airloads, rotor-fuselage aerodynamic interference, drive train loads, tail rotor

loads); however, the effects of these loads are typically small when compared with those produced by the main

rotor that are passed down the main-rotor shaft into the fuselage. Therefore, the traditional methods of helicopter
vibration reduction have usually consisted of means to reduce the vibratory loads generated by the main rotor.

Traditionally, the method used to determine vibration levels throughout the fuselage has been to analyze the
rotor as an isolated system when calculating the loads imposed on a fixed rotor shaft. These loads were then

applied independently to an analytical model of the fuselage to determine vibration levels at locations throughout
the helicopter. However, rotor-body couplings have been known for some time to exist between rotor systems and

the fuselage that can alter the loads. Several analytical techniques have been implemented to couple the rotor sys-

tem to the fuselage. One such technique is known as "impedance matching," where the load and displacement

fields at the interface between the rotor system and the fuselage are matched. References 2 through 6 are represen-

tative of rotor-body coupling research using impedance-matching methods. An advantage of the impedance-

matching method is that the rotor and body may be treated by using different independent analyses. Therefore, one
is free to choose the analyses that can best model the individual systems.

1.3. Scope

The scope of the current research includes the development of an impedance-matching method suitable for

coupling a generic research rotor to the ARES-II rotorcraft testbed. The ARES-II testbed is capable of six-degree-

of-freedom actuation of the rotor hub through a motion-based system called a Stewart platform. Therefore, this

system and its control must be modeled as well. A three-step approach is used for the analysis. First, independent

analytical models of the ARES-II and the Basic Research Rotor (BRR), the rotor system chosen for this study, are

developed (sections 4.1 and 4.2). Second, the developed models of the ARES-II and the BRR are used to generate

a set of impedance matrices representing the load-displacement relationships at the interface joints on each model

(sections 5.3.1 and 5.3.2). These interface joints are the points at which the two systems are joined during the

coupling phase of the analysis. Finally, the two systems are coupled together by enforcing displacement and load

compatibility conditions through simple linear algebraic manipulations of the impedance matrices (section 5.3.3).
A survey of the available analyses was undertaken to decide which would provide the best independent models of



theARES-IIandtheBRR,therotorsystemchosenfor thisstudy.Themostrecentlyavailable,state-of-the-art
analysisforrotorsystemsisCAMRAD-II,thesecondgenerationversionof theComprehensiveAnalyticalModel
of RotorcraftAerodynamicsandDynamics(refs.7and8).ThisprogramwaschosenfortheBasicResearchRotor
modeling.To modeltheARES-II,theDynamicAnalysisandDesignSystem(DADS),a multibodydynamics
analysis,waschosen(refs.9 and10).Alternatively,a finite-elementcodecouldhavebeenused.TheARES-II,
however,isarelativelystiff systemwithdiscreteareasofflexibility--a systemamultibodydynamicscodeiswell
suitedto model.Additionally,DADSoffersasuperiorinterfacefor visualizingthetestbedmotionandfor imple-
mentingthecontrolofthemotion-basedplatform.

Theimpedance-matchingmethodsproposedin references2 through6 havebeenusedfor guidancein this
study.However,twoenhancementshavebeenincludedin thecurrenteffortthatarenotevidentin theliterature.
First,thecontrolledmotion-basedplatformof theARES-IIis uniqueamongrotor testbeds.For thiswork,the
impedance-matchingmethodhasbeenextendedto includethemotionsintroducedby theplatform.Second,two
loadpathshavebeenmodeledbetweenthetestbedandtherotorsystemin thecurrentwork--thehubandtherotor
controlsystem.Onlythehubloadpathisevidentthroughoutthe literature.Therotorcontrolsystemloadpathis
showntobenecessarytoprovideanaccurateassessmentofthesystemloads.

1.4.Organizationof Study

The rest of the study is organized in the following manner:

Section 2. Basic Rotorcraft Analysis: This section provides a brief introduction to rotorcraft analysis for read-

ers unfamiliar with such techniques. Basic rotor system definitions, control, performance, aerodynamics, and

dynamics are discussed.

Section 3. Rotorcraft Wind Tunnel Test Apparatus: This section provides a complete description of the

ARES-II testbed and the BRR.

Section 4. Analytical Models of ARES-II and BRR: This section describes the DADS model of the ARES-II
and the CAMRAD-II model of the BRR. Also described is the development of the equations necessary to pre-

scribe motion of the ARES-II Stewart platform.

Section 5. Dynamic Analysis Using Impedance Matching: This section describes the application and limita-

tions of the impedance-matching approach as applied to the ARES-II and the BRR. A simple spring-mass-damper

system is used to convey the proper impedance-matching techniques. A complete description of the steps neces-
sary to develop the impedance models and coupling equations for the ARES-II and the BRR are included.

Section 6. Presentation of Results: The results obtained with the individual models of the ARES-II and the

BRR are discussed in this section. Also included are coupled rotor-testbed results for actuated and unactuated

motion of the ARES-II Stewart platform.

2. Basic Rotorcraft Analysis

This section provides a brief introduction to rotorcraft analysis for readers who are unfamiliar with such tech-

niques. Several good texts (refs. 11 through 14) are available which discuss rotor system aerodynamics, dynamics,
and stability in detail. This discussion emphasizes the major analytical techniques used in analyzing the Basic

Research Rotor (BRR) system.

2.1. Definitions

2.1.l.A_mu_

For most helicopters, the main-rotor system rotates in a counterclockwise direction (when viewed from above)

at an angular rate of f2 in radians per second. Azimuthal blade position is denoted by _ and is indexed so that

= 0 ° occurs when the blade chosen to be the reference blade is over the aircraft tail and increases in the direction



of rotor rotation.Typically, rotor blades are equally spaced azimuthally so that a general relationship exists
between each blade and the reference blade; that is

2b_
_gb = _ + N (2.1)

where b is the blade number, N is the number of rotor blades, tg is the azimuth of the reference blade in radians,

and _b is the azimuth of the bth blade in radians. Therefore, by using equation (2.1), the reference blade is the bth
blade.

2.1.2. Rotor Speed Parameters

Several important parameters are associated with the rotational speed of the rotor system. The rotor tip speed
in hover is defined by

Vti p = f2R (2.2)

where R is the rotor radius in feet. An associated parameter is the rotor hover tip Mach number given by the fol-
lowing equation:

Vtip (2.3)
Mtip - a

where a is the test medium speed of sound in feet per second. The hover tip Mach number is typically used to

ensure proper aerodynamic scaling when testing rotor systems for performance characteristics in the Langley
Transonic Dynamics Tunnel.

Rotor advance ratio is typically used to refer to the forward flight speed of a helicopter and is defined by

Voo cos O_Tp P
bt = (2.4)

Vtip

where V** is the forward flight speed and O_TpP is the rotor tip-path-plane angle of attack with respect to V,o. A

well-designed rotor system with good performance characteristics may be able to reach _t = 0.45. A poor perform-
ing rotor system may have difficulty in attaining _t = 0.35.

2.1.3. Articulated Rotor Hubs

An articulated rotor hub has three hinges for each blade: the flap hinge, the lead-lag hinge, and the pitch bear-

ing, each of which is shown in figure 2.1 for the rotor hub used with the BRR. The lead-lag and flap hinges permit

blade motions in the plane and out of the plane of rotation, respectively. The pitch bearing allows each blade to
change angle of attack under the influence of the rotor control system.

2.1.4. Coordinate Systems

Referring to the "fixed system" and the "rotating system" is typical in rotorcraft analysis. Generally, the fixed
system consists of the helicopter fuselage and its components. The rotating system consists of the rotor and all

components operating at the same rotational speed as the rotor system such as the main-rotor shaft and rotating
control system components. For the purposes of this study, however, the rotating system is considered to include

only those rotor system components that are part of the rotor hub or the blades. All other rotating-system compo-

nents, including the rotor control system and rotor shaft, are considered to be part of the fixed system. The reasons
for this consideration become evident in section 4.2.2.

The coordinate system referred to throughout this report is a typical rotorcraft fixed-system coordinate frame

oriented as shown in figure 2.2. Unless otherwise specified, all motions and loads are identified with respect to this
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Figure 2.1. Basic Research Rotor articulated hub.
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Figure 2.2. Fixed-system coordinate frame.

coordinate frame. For example, a "positive axial force" is a load oriented along the +X-axis, and a "negative pitch-

ing moment" is a moment defined by using the right-hand rule along the -Y-axis.

2.2. Rotor Control System

The rotor control system consists of the swashplate, swashplate actuators, and the pitch links. A close-up view

of the control system of the ARES-II with the BRR articulated hub is shown in figure 2.3. The swashplate has both

rotating and stationary sections. The rotating section turns with the hub and serves as the lower attachment point

for the pitch links. The upper end of each pitch link is attached to the pitch horn which is part of the blade cuff.

Both ends of the pitch links have spherical rod-end bearings to permit rotational motions at the joints. The

stationary section of the swashplate is mounted to the shaft with a large spherical bearing that is free to travel up
and down the rotor shaft. This arrangement eliminates two degrees of freedom from the swashplate (fore and aft

and side to side), and the nonrotating scissors (fig. 2.3) eliminate a third degree of freedom (rotation about the

shaft). The remaining three degrees of freedom are constrained by three swashplate actuators. The actuators con-
trol the swashplate position up and down the rotor shaft and the swashplate tilt from side to side and fore and aft.
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Figure 2.3. ARES-II control system with BRR hub.
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For control systems with the pitch links trailing the blades, a lowering of the swashplate increases the pitch on all

the blades collectively. Thus, raising and lowering the swashplate controls the "collective" pitch of the blades. By
tilting the swashplate, a "cyclic" blade pitch schedule may be induced; this means that a sinusoidal oscillation of

blade pitch is induced as a function of azimuth. Because the swashplate has two axes of tilt (i.e., fore and aft and

side to side), two cyclic controls are necessary. The cyclic control that induces forward or aft motion of the heli-

copter is called longitudinal cyclic, and the control that induces right or left sideward motion of the helicopter is
called lateral cyclic.

2.3. Rotor Performance

Because this study focuses on rotor dynamics, little needs to be said regarding rotor performance; however,

some explanation is necessary because rotor performance parameters are used to define trim targets in section 5.

Generally, three parameters are of primary concern for rotor performance: rotor-generated lift, propulsive force,

and torque required. Each of these parameters is normally nondimensionalized so that comparisons may be made
between rotor systems regardless of size. However, the typical nondimensionalization factors for fixed-wing air-

craft fail when applied to rotary-wing aircraft in hover flight (Voo= 0). The accepted equations for nondimension-
alization of rotor systems allow for treatment of both the hover and forward flight conditions as follows:

L
C L - (2.5)

xR2p(_R) 2

6



D

C D - _R2p(f_R)2
(2.6)

C - Q (2.7)

Q _R3p(_R) 2

where L is lift, D is drag (or propulsive force), Q is torque, p is density, R is rotor radius, and _ is rotor rotational

speed. Notice that drag D is used for propulsive force. For a wind axis system, lift is normally considered positive

up and drag positive aft. Therefore, referring to the propulsive force (which is oriented forward) as "negative drag"

is typical.

2.4. Rotor Aerodynamics

The rotor system develops its thrust by inducing a mass flow, or induced velocity, downward through the

rotor. The total flow through the rotor, or inflow, is a combination of the flight and induced velocities. This inflow

is a highly nonuniform and volatile flow field that is difficult to model and to analyze. The inflow is, however, a
critical characteristic in the determination of rotor aerodynamic loads because the local inflow directly affects the

local blade section angle of attack. Further, the rotor system aerodynamics represents the primary forcing function

responsible for the dynamic response. Therefore, a good model of the rotor system aerodynamics, and hence, a

good model of the inflow, is necessary.

The rotor inflow is influenced by the flight velocity and the rotor wake. Therefore, a representation of the rotor

wake structure (blade tip vortices and inboard blade vortex sheets) is necessary to calculate the rotor inflow. In
CAMRAD-II, wake models are available based on the research results of Landgrebe (ref. 15), Kocurek and

Tangler (ref. 16), Scully (ref. 17), and Johnson (ref. 18).

References 15 through 18 describe two approaches to model the rotor wake: the prescribed wake and the free

wake. The simpler of the two is the prescribed wake methodology. In the prescribed wake method, a series of tra-

jectories is calculated for the tip vortices and the inboard wake sheet based on rotor operating conditions. The

inflow environment is calculated based on the position and the circulation strength of the wake elements at each

azimuthal step in the analysis. An example of the wake geometry obtained with this method is shown for hover

and forward flight in figure 2.4. The second approach is the free wake methodology in which the tip vortex trajec-

tory is allowed to distort based on the conditions of the surrounding airflow; this results in the most realistic aero-

dynamic environment. An example of the wake geometry obtained with this method is shown in figure 2.5. For

this study, a wake model based on the second approach, the Johnson free wake methodology (ref. 18), has been
used for all calculations to obtain the greatest possible model fidelity.

2.5. Rotor Dynamics

Main-rotor system dynamic response is the primary contributor to helicopter vibratory loads. The aerody-

namic environment of the rotor system in forward flight produces periodic blade loads at frequencies that are har-

monics of the rotor rotational speed. Therefore, these frequencies are the primary concern of the helicopter

dynamicist. Then, referring to the frequencies as referenced to the rotor speed becomes convenient. Thus, the ter-

minology n per revolution, n per rev, and nP is introduced. Each refers to n times the rotor rotational speed f_ or
n_ as is sometimes observed in the literature. As a simple example, consider the BRR at its nominal operating

speed of 660 rpm or 11 Hz. A frequency of 22 Hz would be considered 2 per rev; a frequency of 33 Hz, 3 per rev;

and so forth. Throughout this report, the nomenclature n per rev and nP will be used interchangeably to refer to

frequencies. As in any structural dynamics problem, the natural frequencies of the rotor blades are of considerable
concern. However, their calculation is considerably complicated because of the rotational environment of the rotor

system. Figure 2.6 shows the Southwell or "fan" diagram of the BRR as calculated by CAMRAD-II. This figure

shows rotor blade frequencies in both Hertz and per rev as a function of rotor speed in revolutions per minute.The

lowest two frequencies are rigid-body lead-lag and flap modes representing rotation about the lead-lag and flap

hinges. The higher frequencies are elastic blade modes that have the general appearance of pinned-free elastic



Rotor disk

(a) Hover. (b) Forward flight.

Figure 2.4. Prescribed wake geometry for hover and forward flight. Forward flight geometry shows only tip vortex trajectory.

Figure 2.5. Free wake geometry in forward flight. Only tip vortex trajectories are shown.

beam modes. The per-rev lines in figure 2.6 represent the frequencies at which the aerodynamic forcing functions
excite the blade modes.

The rotor system dynamics problem is one of forced response in which the aerodynamic loads supply the forc-

ing functions at discrete frequencies (i.e., per rev). The next concern is the determination of which frequencies

have the greatest effect on the helicopter vibratory loads• Appendix A contains a detailed development of the man-

ner in which rotating-blade loads are transferred down the shaft into the fuselage or fixed-system components of
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Figure 2.6. Basic Research Rotor rotating frequencies. Vertical dashed line at 660 rpm represents nominal operating speed
of BRR.

the aircraft. Here it is sufficient to point out that the rotor system normally acts as a loads filter for the fixed sys-

tem, passing down only loads whose frequencies are integer multiples of the blade passage frequency (i.e., fre-

quencies of kN per rev, where k is an integer and N is the number of blades). For a four-bladed rotor system such

as the BRR, the blade passage frequency is 4 per rev so that only loads having frequencies of 4P, 8P, 12P, and so

forth are passed to the fixed system. As shown in appendix A, these fixed-system loads result from loads in the

rotor system at frequencies of kN per rev and (k + 1)N per rev. Therefore, for the BRR, 4-per-rev fixed-system

loads are generated by 3P, 4P, and 5P loads in the rotor system, and 8-per-rev fixed-system loads are generated by

7P, 8P, and 9P loads in the rotor system. Furthermore, the harmonic loads generally become smaller with increas-

ing frequency. Therefore, considering only frequencies at 9 per rev and below is typical in rotor dynamics analysis

of four-bladed rotor systems. This is a key point in the analysis of rotor-body coupled systems since only two

fixed-system frequencies (4P and 8P) are considered critical for the analysis of a four-bladed rotor.

3. Rotorcraft Wind Tunnel Test Apparatus

The scope of the current research does not include any wind tunnel testing. However, since the objective is to

develop analytical models of rotorcraft wind tunnel test hardware, descriptions are provided in this section to

acquaint the reader with the apparatus necessary to perform such testing. This description gives the reader a more

thorough appreciation of the basis for model-scale aeroelastic rotor testing in the Langley Transonic Dynamics

Tunnel.

3.1. Langley Transonic Dynamics Tunnel

The Langley Transonic Dynamics Tunnel (TDT) is a continuous-flow pressure tunnel capable of speeds up to

Mach 1.2 at stagnation pressures up to 1 atm. The TDT has a slotted test section that is 16 ft square with cropped
comers and a cross-sectional area of 248 ft 2. Either air or Refrigerant-12 (R-12), a heavy gas, may be used as the

test medium. For rotorcraft research, a test medium density of 0.006 slug/ft 3 is typically used. The TDT is particu-

larly suited for rotorcraft testing because of three advantages associated with the heavy gas. First, the high density

9



of the test medium permits model rotor components to be heavier; thereby, structural design requirements are

eased while dynamic similarity is maintained. Second, the low speed of sound of R-12 permits much lower rotor

rotational speeds and forward flight velocities to match full-scale Mach numbers; thus, the centrifugal blade forces

are eased and the drive system power requirements are reduced. Furthermore, the lower rotational speeds translate

into a smaller control bandwidth when using active control techniques that depend upon harmonic actuation.

Third, the high-density environment increases the Reynolds number throughout the test envelope and permits a

more accurate simulation of the full-scale aerodynamic environment. A more detailed discussion of the advantages

of the heavy gas test medium and further discussions on rotorcraft testing in the TDT are presented in
reference 19.

3.2. Aeroelastic Rotor Experimental System

The second generation version of the Aeroelastic Rotor Experimental System (ARES-I/) model-scale helicop-
ter rotor testbed is currently under development at the TDT. The stand-mounted testbed is intended for use in

defining rotor-body coupling phenomena by using aeroelastically scaled model rotor systems. Sections 3.2.1

through 3.2.3 describe the testbed and its major subsystems. These subsystems include a stand and longeron com-

ponent (section 3.2.1), an actively controlled hydraulic Stewart platform (section 3.2.2), and a rotor pylon section

(section 3.2.3). Figures 3.1 through 3.6 provide various views of the testbed. Figure 3.1 shows the ARES-I] with

the BRR installed. The fuselage shell left-side panel has been removed to show the placement of the rotor pylon
within the shell. The aerodynamic fairing normally installed around the stand has also been removed to show stand

details. Figure 3.2 shows the testbed with the rotor blades and the fuselage shell removed. A close-up view of the
upper portion of the ARES-II is shown in figure 3.3. Figures 3.4 through 3.6 show detailed views of the rotor
pylon and the Stewart platform. For all views, the ARES-I/drive belts and miscellaneous hardware have been

removed for clarity.

3.2.1. Stand and Longeron

The ARES-I/stand (fig. 3.2) is constructed of a steel baseplate, a steel central column, four steel support col-

umns, a steel yoke to support the longeron, and two airfoil-shaped aluminum ribs to support an aerodynamic fair-
ing during wind tunnel testing. The longeron (figs. 3.2 through 3.5) is constructed of three steel box beams each

2 in. square and a 1-in-diameter steel bar. Aluminum fittings placed on the longeron (fig. 3.5) provide support for

the hydraulically controlled Stewart platform. Figures 3.3 and 3.4 clearly identify the longeron and its placement

on the stand. The connection between the stand and longeron is a revolute joint oriented to allow pitching motions

of the longeron relative to the stand. An electric motor-driven screw-jack actuator placed behind the stand is used

to control the pitch motion of the longeron. This arrangement permits the adjustment of rotor pylon pitch (or shaft
angle of attack), a feature necessary for proper trim of rotor systems in forward flight.

The ARES-I/stand is designed to be soft mounted to the TDT floor with elastomeric pads placed at the four

comers of the stand baseplate. This arrangement permits limited flexibility and allows tuning of the ARES-I]
rigid-body frequencies. Alternatively, the stand may be hard mounted to the floor.

3.2.2. Stewart Platform

A hydraulically actuated Stewart platform is placed between the stand-longeron assembly and the rotor pylon.

It consists of a six-degree-of-freedom baseplate that is driven by six hydraulic actuators attached to the longeron.
The platform is similar in function to those commonly in use on aircraft motion-based simulators and allows six-

degree-of-freedom actuation of the rotor pylon which is rigidly attached to the Stewart platform baseplate.

Figure 3.4 shows the rotor pylon exploded from the longeron and Stewart platform assembly. This view shows the

orientation of the Stewart platform actuators with respect to the longeron. Figure 3.5 shows a close-up view of the

Stewart platform. The actuators are connected to the longeron brackets by spherical rod-end bearings. The piston

rod of each actuator is connected to the Stewart platform baseplate with a spherical rod-end bearing. The actuator
rod connections provide a three-point restraint for the baseplate; thereby, six-degree-of-freedom control of the

platform is allowed. Two of the rod-baseplate joints are labeled in figure 3.5; the third is hidden from view.

10
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Figure 3.1. ARES-II with Basic Research Rotor installed.

The ARES-II Stewart platform provides a limited range of motion about the nominal centered position of the

platform. Translational motions are limited in range to :k0.4 in. and rotational motions to +9-.0°. For this study, the
nominal translational and rotational rotor pylon motions applied are + 0.01 in. and i-0.05 °, respectively, well

within the range of motion of the Stewart platform.

3.2.3. Rotor Pylon

Figure 3.6 provides a detailed view of the rotor pylon. The rotor pylon consists of the rotor control system, the

rotor drive system, and the force measurement system. As mentioned earlier, the rotor hub and pitch links are not

considered part of the rotor pylon. They are shown only to provide a complete view of the assembled system. The
rotor control system consists of three fly-by-wire hydraulic swashplate actuators and a standard rise-and-fall

swashplate. The rotor drive system is powered by a variable-frequency synchronous motor rated at 47-hp output at

12000 rpm. The motor is connected to the rotor shaft through a belt-driven, two-stage speed reduction system.

Instrumentation on the rotor pylon provides continuous display of swashplate control settings, rotor speed, and
rotor forces and moments. A 30-channel slip-ring assembly placed in the rotor shaft permits the transfer of

11
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Figure 3.2. ARES-II with aerodynamic shell removed. Drive belts and miscellaneous hardware are not shown for clarity.
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Figure 3.3. ARES-II upper stand components.
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Figure 3.4. Exploded view of ARES-II rotor pylon and Stewart platform.
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Figure 3.5. Close-up view of Stewart platform components.

rotating-system data to the fixed system. Fixed-system forces and moments are measured by a six-component

strain-gauge balance placed at the bottom of the rotor pylon. This balance is called the fixed-system balance.

Rotating-system forces and moments are measured by a second six-component strain-gauge balance. This balance

is placed just below the rotor hub between the rotor shaft and the mast and rotates with the shaft assembly. This

balance is called the rotating balance.

3.3. Basic Research Rotor

For the initial investigation on the ARES-II, the BRR is the rotor system chosen. The BRR is a four-bladed,

articulated rotor system designed for generic rotorcraft wind tunnel research, but it is not intended to represent any

full-scale flight vehicle hardware.

3.3.1. Rotor Hub

A four-bladed articulated rotor hub is used for the BRR. The hub lead-lag and flap hinges are coincident and

placed 3.0 in. from the center of rotation, with the pitch bearing placed directly outboard of the hinges. Rotary

potentiometers placed on the hub and geared to the blade cuffs permit measurement of blade lead-lag, flap, and

pitch angles. Lead-lag dampers are used on the hub with an effective damping output of 980 in-lb-s/rad. Kinematic

coupling due to the control system configuration induces a pitch-flap coupling ratio of 0.5, flap up-pitch down;

that is, the coupling produces a 0.5 ° nose-down blade pitch for each degree of upward (positive) blade-flap

displacement.

3.3.2. Rotor Blades

The BRR blades are untwisted, rectangular planform research blades with NACA 0012 airfoils. The blades are

not representative of those used on any full-scale helicopter; however, they have been designed with model-scale

dynamic properties similar to those used on full-scale helicopters. The blades have a chord of 3.625 in. and, when

installed on the rotor hub, have a radius of 56.224 in.
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Figure 3.6. ARES-I] rotor pylon consisting of rotor drive, control, and force measurement systems. Drive belts and

miscellaneous hardware are not shown for clarity.

4. Analytical Models of ARES-II and BRR

Coupling dynamic systems with an impedance-matching approach requires the development of impedance

matrices that describe the load-displacement relationships at the interfaces connecting the individual systems. The

individual systems are then coupled by imposing load and displacement compatibility conditions on the matrices.

Therefore, the first step in the development of an impedance-matching method for coupling the BRR to the
ARES-II testbed is the development of individual analytical models of the two systems. This method has the
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advantageof allowingtheselectionof thebestanalysisfor eachsystemtobeanalyzed.FortheARES-II,a finite-
elementcodecouldhavebeenchosento developthemodel.However,theDynamicAnalysisandDesignSystem
(DADS),amultibodydynamicscode,wasselectedto beusedbecauseDADShasa significantadvantageovera
standardpurposefinite-elementcodein theareasof motionvisualization,activecontrolinterfaces,andhydraulic
systemmodeling.FortheBRRmodel,thesecondgenerationversionof theComprehensiveAnalyticalModelof
RotorcraftAerodynamicsandDynamics(CAMRAD-II)hasbeenchosen.Eachof theseanalysesoffersstrengths
intheirrespectiveareasthatcouldnothavebeenmatchedwereamodelof thecompletesystemdevelopedinasin-
gleanalysis.Thissectionpresentsanoverviewof themodelformulationsineachanalysis.Thedevelopmentof the
impedancematricesusingresultsfromthesemodelsandthecouplinganalysisis detailedin section5. Appen-
dixesB andCprovidethereaderwithdetailedprograminputs.

4.1. DADS Model of ARES-II

DADS (refs. 9 and 10) is a time-marching computer analysis that simulates physical systems by numerically

integrating a set of differential algebraic equations assembled by the program according to geometry, mass, stiff-

ness, damping, joint, and external load information provided by the user. The results of the numerical integration

are supplied as time histories of body positions and system loads. Although the program is primarily a multibody

dynamics analysis utilizing rigid-body components connected with joints, flexibility may be included at the joints
and beam elements or component mode synthesis may be used to model elastic structures. For the ARES-II, a

model consisting of rigid bodies, flexible joints, and a beam element has been developed. For this model, compo-
nent mass and inertia characteristics have been defined by using the Pro/ENGINEER solid-modeling, computer-

aided-design software. Component stiffness and damping characteristics have been defined with known experi-

mentally determined values and estimates obtained from simple analytical models. The construction of the DADS
model of the ARES-II is discussed from the ground up in section 4.1.1. Figures 3.2 through 3.6 are useful to the

reader in visualizing the model developed. Section 4.1.2 details the analysis necessary to determine the time-

varying actuator lengths for control of the ARES-II motion platform.

4.1.1. ARES-H Model Construction

The ARES-II stand is shown in figure 4.1 modeled with two rigid bodies (the base and yoke) and one elastic

beam (the post). For wind tunnel testing, the stand is constrained to the floor with elastomeric pads placed at each
of the four comers of the stand baseplate. These pads permit pitch, roll, and normal displacements of the stand but

restrain axial, side, and yaw displacements. The pads are modeled in DADS by four spring elements with damping
and constraints to eliminate the axial, side, and yaw degrees of freedom of the stand.

The ARES-II longeron is modeled as a rigid body. A revolute joint is placed between the longeron and the

stand yoke to control rotor pylon pitch. The linear screw-jack actuator placed between the stand and the longeron

to control shaft angles is not modeled; instead a rotational driver constraint is placed at the location of the shaft

angle revolute joint to control relative pitch motion between the stand and longeron.

All brackets and fittings for the attachment of the Stewart platform actuators to the longeron are modeled as

rigid bodies and are rigidly attached to the longeron. The connections between the actuators and the brackets are

modeled as universal joints. These joints are oriented such that the rotational degree of freedom about the longitu-
dinal axis of the actuator is eliminated. Thus, the actuators do not spin but still have the necessary freedom of

motion to actuate the pylon components. The connection of the piston rod portion of the actuators to the actuator

bodies is modeled by translational joints. Control elements are also modeled to provide means to drive each actua-

tor according to a specified schedule. The connection between the actuator rods and the Stewart platform baseplate

is modeled with spherical joints.

The ARES-II fixed-system balance is modeled as two rigid bodies (top and bottom plates) connected by a six-

degree-of-freedom elastic joint with damping. The bottom plate of the balance is rigidly attached to the baseplate

of the Stewart platform. A large rigid body consisting of the main-shaft housing, the intermediate-shaft housing,
and the drive motor is rigidly mounted to the top of the fixed-system balance. The main-rotor shaft and sheave,

intermediate shaft and upper and lower sheaves, and the drive motor sheave are all modeled as rigid bodies with
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Post (elastic)

Base (rigid)

Figure 4.1. ARES-1I stand.

rotational degrees of freedom. The main shaft is connected to the main-shaft housing, the intermediate shaft to the

intermediate-shaft housing, and the drive-motor sheave to the drive motor through revolute joints. Constraint

equations are used to model the proper drive reduction ratios between the drive motor sheave and the upper sheave
on the intermediate shaft, and between the lower sheave on the intermediate shaft and the main sheave.

The mass of the swashplate, pitch links, and swashplate actuators was chosen to be included in the DADS

model of the ARES-II. Therefore, these components are massless in the CAMRAD-II rotor system model. Their

mass is included in that of the main-shaft housing. The interface joint for the swashplate, then, is included in the

rigid-body model of the main-shaft housing.

The rotating balance, like the fixed-system balance, is modeled as two rigid bodies connected by a six-degree-

of-freedom elastic joint with damping. The bottom plate of the rotating balance is rigidly attached to the top of the

main shaft. The mast is modeled as a rigid body and rigidly attached to the top plate of the rotating balance. The
interface joint for the rotor hub is included in the rigid-body model of the mast.

4.1.2. Actuator Motion Analysis

A means is necessary to control the ARES-II Stewart platform actuators so that prescribed rotor pylon motions

may be imposed. To do so one must assume a center of motion for the rotor pylon, or "simulated center of grav-
ity." The equations may then be generated to develop schedules of actuator lengths as a function of the desired

simulated c.g. motions. To simplify the analysis, a rigid structure is assumed so that dynamic response does not
interfere with the desired motions.

To begin the analysis, numbering the actuators as shown in figure 4.2 is useful. Two coordinate systems are
necessary. One is called the "B-frame" (fig. 4.3), a body-fixed coordinate system on the fixed-system balance with
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Figure 4.2. ARES-II actuator numbering.

its origin at the balance center. The second is called the "L -frame" (fig. 4.2) and is fixed to the longeron with the

same orientation as the B-frame when the balance is in the nominal centered position.

A set of vectors may be defined from the balance center to the joints between the Stewart platform actuators

and the baseplate. These vectors are defined as r 1 through r 6 for actuators 1 through 6 and are referenced to the

balance coordinate frame (fig. 4.3). For the ARES-II configuration these vectors are

r 1 =-7.206i B

r 2 = -6.821i B

r 3 = -7.348i B - 5.724JB

- 2.237k B

- 2.030k B

- 2.629k B

r 4 = -7.348i B + 5.724j B - 2.629k B

r 5 = -7.113i B - 5.450JB - 2.862k o

r 6 = -7.113i B + 5.450j B - 2.862k B

(4.1)

where the dimensions are in inches. Another vector is defined from the balance center to the arbitrarily selected

simulated c.g. (fig. 4.3). This vector is defined as

rg = rgxi B + rgvj B + rgzk o (4.2)

Therefore, six vectors from the simulated c.g. to the Stewart platform baseplate joints may be generated with

r ga = -rg + r a (4.3)

where the subscript a denotes the referenced actuator (e.g., rg 1 is the vector from the simulated c.g. to the base-

plate joint for actuator 1).

Assume now a desired translational displacement vector for the simulated c.g. with respect to the longeron

coordinate system L as follows:

d g = d gxi L + d gyJL + d gzk L (4.4)
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Figure 4.3. Vectors for motion analysis. Views are of fixed-system balance mounted on Stewart platform baseplate.

To obtain the desired translation of the simulated c.g., each Stewart platform baseplate joint must translate an

equal distance. Therefore, the actuated displacement of each joint for simulated c.g. translation is

d a =dg (4.5)

To calculate joint displacement for rotations about the simulated c.g., however, requires the application of a

rotation of each vector rg a and then a translation of-rg a. To illustrate, assume a single-axis rotation Oxg through

the simulated c.g. where the rotation is with respect to the longeron coordinate system L. The matrix equation for

the joint displacement is

[ dax t
day _--

da z

The general form of equation (4.6) is

lo o]fra]frax]0 cos Oxg -sin OXg rgay _ rgay

0 sin 0xg cos Oxg rgaz rgaz

{da} = [Rxg]{rg a}- {rga}

(4.6)

(4.7)
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Therefore, in a mathematical sense, all rotations must be completed before the translation occurs. If a rotation

sequence of y-x-z (pitch-roll-yaw) is assumed, the complete rotation matrix may be written as

[Rg] =

COS 0y COS 0 z

- sin 0 x sin 0y sin 0 z

--cos 0 x sin 0 z

COS 0y sin 0 z xCOS0 COS0 z

+ sin 0 x sin 0y COS 0 z

sin 0y cos 0 z

+ sin 0 x cos 0y sin 0 z

sin 0y sin 0 z

- sin 0 x cos 0y COS 0 z

-cos 0x sin 0y sin 0 x cos 0 x cos 0y

(4.8)

Combining the results for actuator displacement due to translation and rotation of the simulated c.g. yields

{da} = [l]{dg} + [[Rg]-[I]l{rga} (4.9)

Position vectors may be developed for each actuator when the Stewart platform is placed in its nominal or refer-

ence position. The position vectors are denoted Ia and represent the relative position of the Stewart platform joint

of the actuator with respect to the actuator joint at the longeron. These vectors are

!1 = 1.869i L + 6.580JL- 3.987k L

12 = 2.254i L -6.580JL-3.780k L

13 = 6.346i L + 1.376JL- 4.384k L

14 = 6.346i L - 1.376JL-4.384k L

!5 = _ 4.825JL- 6.062k L

!6 = 4.825JL- 6.062k L

(4.10)

Then, the actuator lengths may be determined by

la = Ila + dal (4.11)

For control of the DADS model Stewart platform actuators, equations (4.9) through (4.11) are used to calcu-

late schedules for each actuator length. These results are applied as time-varying distance constraints between the

joints at each end of the actuators.

4.1.3. DADS Model Results

Because DADS is a time-marching analysis simulating the physical system through numerical integration, the

output is a set of time histories. Thus, no eigenanalysis is available to determine system frequencies and modes.
Instead, it is typical to "excite" the DADS model and measure the response in a manner similar to physical-model

shake testing. Alternatively, a displace-and-release (or "pluck") excitation may be used to identify the basic free-

response characteristics of the model.

The damped natural frequencies of the DADS model of the ARES-II have been identified by displacing the

hub interface joint, then releasing and allowing free-vibration response. Fast Fourier Transforms of the loads mea-

sured at the fixed-system balance during the free response are shown in figure 4.4. For the axial and pitch

response, the ARES-II was excited by plucking the hub interface joint axially. Side and roll responses were gener-
ated by plucking the hub joint to the side; the normal response, by plucking the hub joint vertically; and the yaw
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Figure 4.4. FFI's of ARES-II free-response measured at fixed-system balance.
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response,bypluckingwithayawingmomentatthehubjoint.TheFFTsin figure4.4havebeenusedto identify
thedampednaturalfrequenciesandto estimatethemodalcharacteristicsof theARES-IIsystem;thesearepre-
sentedin table4.1.

SignificantmodalcouplingexistsfortheARES-IIelasticmodesbecausethec.g.of therotorpylonis above
andforwardof thefixed-systembalanceflexibility.Therefore,axialmotionsof theARES-IIrotorpylongenerate
pitchresponse.Theassociatedverticalaccelerationof thec.g.dueto pitchingthengeneratesnormal(vertical)
response.Similarly,roll andyawmotionscouplewithsidemotionsof therotorpylon.Theinformationpresented
in table4.1areestimatesbasedontheresultsof figure4.4andaphysicalunderstandingof theARES-II.Noexper-
imentaldatawereavailablethatdefinedthestiffnessanddampingof theARES-IIelastomericstandmounting
pads.Therefore,atrial-and-errorapproachwasusedto definethesepropertiesto obtainrigid-bodypitchandroll
frequenciesof 5Hzwith8percentcriticaldamping.Theelasticmodesarelistedwiththecomponentestimatedto
bethemostdominantfirst andtheleastdominantlast.Forexample,thefirst elasticmodeat58Hzisconsidered
primarilyanaxialmodewithpitchandnormalcoupledresponse.To obtaina moreaccurateassessmentof the
ARES-IIfrequenciesandmodalidentificationwouldrequirethedevelopmentof afinite-elementmodelandan
eigenanalysis.

4.2. CAMRAD-II Model of the BRR

CAMRAD-II is a state-of-the-art rotorcraft analysis that can model a wide range of rotorcraft configurations.

For this study, CAMRAD-II was used to develop a complete aerodynamic and dynamic model of the BRR. The

kinematic effects of the swashplate control system were included in the model. However, because the weight of

the swashplate and control system was included in the DADS model, these components were considered massless
in the CAMRAD-II model.

The development of a detailed CAMRAD-II model consists of two stages. The first stage is the development
of the "rotorcraft shell" model. The CAMRAD-II rotorcraft shell allows the user to input a general set of rotorcraft

information to construct models of most common rotor system configurations. The shell effectively eliminates

much of the tedious work involved in generating a model because it constructs much of the detailed system model.

The second stage is the development of the "core" model. The core model allows the user to supply detailed infor-

mation regarding the system to be modeled; this permits the generation of configurations that cannot be fully con-

structed by the shell. The development of the core model is, however, more complicated and may easily require

input data an order of magnitude more than that required by the shell.

4.2.1. BRR Shell Model

The rotor system model of the BRR was initially generated by using rotorcraft shell input. Because each blade

is, in theory, identical, only one blade is modeled. Phasing routines internal to CAMRAD-II allow for the calcula-
tion of system response by using all four blades. The hub is modeled as a rigid body inboard of the flap and lead-

lag hinges. A second rigid body is modeled between the hinges and the pitch bearing. A third rigid body extends

Table 4.1. Damped Natural Frequencies and Modes of ARES-II

Frequency, Mode
Hz

5

5

17

58

67

79

90
131

163

Rigid pitch

Rigid roll

Rigid normal
Elastic axial/pitch/normal
Elastic side/roll/yaw
Elastic normal/axial/pitch

Elastic yaw/side/roll
Elastic normal/pitch/axial
Elastic side/roll
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from the pitch bearing to the outboard end of the rotor blade cuff. The blade is modeled by using 5 finite-element

beams with 19 aerodynamic panels distributed radially. The kinematic effects of the control system are included

by providing detailed placement of the pitch horn and pitch link attachment points.

4.2.2. BRR Core Model

Enhancement of the model generated by the rotorcraft shell is necessary to permit the implementation of pre-

scribed hub motions. These hub motions, as shown in section 5.3.2, are necessary to develop the rotor system

impedance matrices for the coupling analysis. Additionally, the hub mass and inertia characteristics calculated by

the rotorcraft shell are generally inaccurate. Therefore, the core model was used to prescribe the proper hub mass

and inertia.

Figure 4.5 shows a schematic of the model developed. The boxes in the figure represent components available

for use in CAMRAD-II models. The component type is listed at the bottom of each box (e.g., rigid body, Fourier

series) and the component name, if any, is listed at the top of each box. The circles in figure 4.5 represent joints

between structural components of the CAMRAD-II model. The value inside the circle specifies the number of

motion degrees of freedom that the joint permits. Labels next to the joints identify the joint function.

The CAMRAD-II model that was generated represents the ARES-II/BRR in configuration only. The stand and

pylon components shown in figure 4.5 are dimensioned to represent the ARES-II but have no stiffness or mass

properties. Thus, the ARES-II portion of the CAMRAD-II model is strictly a kinematic, but not dynamic, repre-

sentation of the testbed. It is modeled only to impose the BRR hub motions required for development of the rotor

impedance matrix described in section 5.3.2.3. The BRR model, however, is a complete dynamic and aerodynamic

Hub motion harmonic

i_npu__ (6) .......

?
I Fourier series

Spindle

Rigid body

Lead-lag/flap hinges

Hub

I Rigid body

Rotational bearing _

Pylon

Hub interface

joint loads

....... .3

6 inputs to 1 vector _z, Ri[[id .r6_bodY

[Summer It / "'ctuated motion joint,

Stand

Rigid body

(_) n-dof joint .

Component interface

Pitch bearing

Rigid body 5 elastic

_ Rod-end bearing

Pitch link

[Rigid body I

_ Rod-end bearing

i_ Swashplate

_ (rotating)

_ IRigid body

_ Rotational bearingi
_[ Swashplate [

_._ Swashplate interface

Ou_tput joint loads

Hub motion output

/////////

Figure 4.5. Schematic of CAMRAD-II model of BRR.
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representation of the rotor system. As shown in figure 4.5, the model consists of a rigid body component named

"stand" which is rigidly attached to the ground. To permit prescribed hub motion, a rigid body component named

"pylon" is installed at the top of the stand component with a six-degree-of-freedom (6-dof) joint. All rotor system

components as generated by the rotorcraft shell in section 4.2.1 are attached to the pylon component. The dashed

box at the left of the figure shows the control input portion of the model. Harmonic input amplitudes may be pre-

scribed for each of the six possible joint motions. These amplitudes are input to a Fourier series component that

generates a set of six azimuthally varying signals by using the equation

T(_) =

8

X (H% cos n_! + H% sin ml/)
n=0

where Hn_ and Hns are the harmonic inputs, T(_) is the output signal, and only the mean and first eight harmon-
ics of mouon are considered. The six output signals are combined into a single vector by a "summer" component

that inputs the signals to the 6-dofjoint between the stand and pylon components. Actuator features internal to the

6-dofjoint process the vector and generate linear and angular motions of the pylon and, thus, the hub.

Output components are included in the model to display hub motion, hub loads at the hub interface joint, and

swashplate loads at the swashplate interface joint. These output components resolve loads in the fixed-system
frame for the mean and 4P and 8P harmonic forces and moments. This procedure offered the advantage of having

to process only 4P and 8P loads in the coupling procedure instead of processing 3P, 4P, 5P, 7P, 8P, and 9P loads as

would be required if the loads were resolved in the rotating frame. Thus, an effective revolute joint is placed
between the rotor hub and the mast of the ARES-II model, which although not representative of the configuration

of the physical model, is effective in producing efficient results due to the reduction in excitation frequencies
considered.

5. Dynamic Analysis Using Impedance Matching

Dynamic analysis of systems through impedance-matching approaches can be useful. However, as with any
engineering analysis approach, one must be careful to consider the limitations and assumptions of the application.

For impedance matching, two such limitations stand out. First, impedance matching is a frequency-dependent

technique. Therefore, impedance characteristics must be defined for each component to be coupled at each fre-

quency of interest. Second, impedance-matching approaches are developed with linear theory. Therefore, only

systems that are linear by nature or whose characteristics are linear in a region of interest are suitable for analysis

by impedance matching. For rotorcraft application, in which one may be interested in coupling a rotor system to a

fuselage model, the first of these limitations is generally not of considerable concern. Because the rotor system is

the primary contributor to helicopter vibratory loads and the rotor-generated forcing functions applied to the fuse-

lage are harmonic in nature, only a few such frequencies of interest exist in a rotorcraft application. Typically,

rotor dynamics applications are restricted to those frequencies below 9P for a four-bladed rotor system. Therefore,
for the Basic Research Rotor, which passes to the fixed system only steady loads and loads at 4P and 8P, only two

frequencies exist for which impedance characteristics must be developed (i.e., 4P and 8P). The second limitation

of impedance matching, however, is of greater concern in rotorcraft analysis. Although fixed-systems structures

(i.e., fuselages, testbeds, and whirl stands) are typically modeled by using linear theory, the rotor system is inher-

ently nonlinear. This nonlinearity is of particular concern at low flight speeds (bt < 0.15) where blade tip vortices

impinge on the following blades, and high flight speeds (bt > 0.30) where rotor blade stall produces nonlinear

response. Therefore, the application of impedance matching to couple a rotor system to a fuselage or test stand

requires that the rotor impedance model be developed about a steady-state flight condition of interest. Addition-

ally, the results must be carefully checked to ensure that rotor system response remains within a linear range.
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Theterm"impedance"oftenhasdifferent meanings which depend upon the application used. For this study,

impedance is defined as the force-displacement relationship that exists for a system degree of freedom when an

interface joint location is being driven by a prescribed oscillatory motion at a particular frequency of interest. Also

of interest is system "mobility," which is defined as the displacement-force relationship that exists for a system

degree of freedom when an interface joint location is being subjected to a prescribed oscillatory force at a particu-

lar frequency of interest. Both impedance and mobility, as shown in section 5.1, may be represented by square

matrices. Further, system mobility is shown to be the inverse of system impedance. Therefore, the term "imped-

ance matching" is appropriate for system coupling using either impedance matrices, mobility matrices, or both.

Section 4 discussed the DADS model of the ARES-II and the CAMRAD-II model of the BRR. This section

discusses how these models are used to develop impedance representations of each system and details the

impedance-matching approach developed to couple the two systems. For this study, two interface joints are used:

one at the joint between the hub and mast of the main-rotor shaft and the other at the joint between the swashplate
and the main-rotor shaft.

5.1. Sample Coupled Model

A simple model is used to demonstrate the principles of the coupling analysis. This model is shown in

figure 5.1. Two systems are shown which are to be coupled at the interface joint I. System A consists of three one-

degree-of-freedom (1-dof) masses. Spring k I and damper c 1 are placed between the ground and ml; an actuator is

placed between masses m 1 and m2; and another spring k2 and damper c2 are placed between masses m 2 and m 3.

The interface joint for the system is placed on m 3. System B consists of one 1-dof mass with a spring k3 and

damper c 3. The interface joint for system B is placed at one end of the spring-damper so that the spring-damper

lies between the interface joint and the mass. System A is a 2-dof system due to the constraint that exists because

of the actuator. This constraint equation may be expressed as

x 2 = x I + 1A (5.1)

F_(t)

k 2 c 2

-Ix 
k3 "_ c 3

3 C_ Fl(t)

Sys_mA Sys_mB

Figure 5.1. Sample model.
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The remaining two generalized coordinates for system A include x 1 and x 3. The equations of motion for these two

coordinates may be easily generated. They are

(m 1 + m2 )5il + m2lA + (c 1 + c2 )'_ 1 - c2 ( "_3 - [A ) + (k 1 + k2 )x I - k2 (x3 - lA ) = 0 ]

m3x3 + c2('r3 - 3_1 - lA) + k2(x3 -Xl - lA) = Fl(t) I

(5.2)

Because the actuator may be used to force system motion, the equations of motion are written as

(m 1 + m2)_" 1 + (c 1 + c2)x 1 - c2_ 3 + (k I + k2)x 1 - k2x 3 = _m2"l"A _ c2[ A - k21A

m35(3 + c2('_3 - "rl ) + k2(x3 - Xl ) = FI(t) + C2[A + k2lA

(5.3)

Now let

Fl(t) = Flc cos _t + Fls sin _t

IA(t ) = lAc cos _t + IAs sin _t

(5.4)

where Flc, F/s, lAc, and lAs are constant and fl is the frequency of the applied force or actuation. If steady-state

responses are assumed in the form

1

X l (t) = Xlc COS _t + Xls sin f_t [

x3(t ) = x3_ cos _t + x3_ sin _t I
a matrix expression for the solution of the steady-state response may be written as

(5.5)

-_)2(m 1 + m2) + k 1 -I- k 2

-_(c 1 + c 2)

_(c I + c 2) -k 2 -c2_

-_2(m 1 + m2) + k 1 -I- k 2 c2_") -k 2

-_c 2 k 2 - _2m 3 _c 2

-k 2 -_c 2 k 2 - _2m 3

-k 2

_'_c 2

_-_2m21Ac - c2_l As - k21A c

= _'_2m21As + c2_lAc - k21As

FI_ + k21A_ + c2_lAs

F/s - c2_lAc + k21As

Xl c

Xl s

X3 c

X3 s

(5.6)
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5.1.1. Mobility Matrix Development

A numerical example is used to illustrate the development of the sample model mobility matrices. Let

m 1 = m 2 = m 3 = 1.0 slug, k 1 = k2 = 10.0 lb/ft, and c 1 = c 2 = 2.0 lb-s/ft. To develop the mobility matrices for m 1 and

m 3, the force input at the interface is set to a unit cosine force (Flc= 1.0, Fls = 0.0) and the actuator is held fixed

(lAc = lAs = 0.0). For an excitation frequency of _ = 2_ rad/s, the vector x resulting from the solution of

equation (5.6) is

Xlc 1 [ -0.001343

Xlx [ = I -0.006917
Xac / -0.025186

x3x J 0.012510

(5.7)

Similarly, the result when a unit sine force (Fie = 0.0, Fix = 1.0) is applied and the actuator is held fixed

(IAc = lax = 0.0) is

xlci00069171Xls -0.001343
' • = (5.8)

x3c -0.012510

x3 x -0.025186

With the results from equations (5.7) and (5.8), a mobility matrix may be generated for either m I or m 3. Because

the interface joint is on m 3, it is necessary that the mobility matrix for this mass be developed. The development of

the mobility matrix for m I is optional for the coupling analysis but is useful if complete system motion is
desirable.

The general method for developing a mobility matrix is to place the cosine and sine components of the degree-

of-freedom displacement due to a unit cosine forcing function at the interface joint in the f'n'st column of the

mobility matrix. Likewise, the second column of the matrix is filled with the cosine and sine components of the

degree-of-freedom displacement due to a unit sine forcing function at the interface joint. For m 3, then, the mobility
matrix is

I-0.025186 -0.012510]
[A3] = l_ 0.012510 -0.0251861

(5.9)

Because the system is linear, the mobility matrix may be developed by using only the results from either the cosine

force or the sine force. Throughout this work, a sine excitation has been used so that the mobility matrix for the

mth degree of freedom may be generated by

I x"1[A m] = Xms (5.10)

Xrac gmsJ

Therefore, by using a mobility matrix, the motion of a degree of freedom may be determined if the applied force at
the interface is known; that is,
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IXmclamt}Xms (5.11)

5.1.2. Motion Matrix Development

Besides generating the mobility matrix for the sample system A, the effect of actuator motion on system per-

formance is necessary. These effects may be included as a matrix component as well. For this study, this matrix is

called the "motion matrix" and will be denoted by [Bin] for each degree of freedom m of interest. The motion

matrix may be generated in a manner similar to the mobility matrix. With the numerical example, equation (5.6) is

solved for an absence of force input (F/c = 0.0, FI, = 0.0) while either a unit cosine motion (lAc = 1.0, lAs = 0.0)

or a unit sine motion (l A = 0.0, IAs = 1.0) is effected by the actuator. The motion matrix is assembled in the same
manner as the mobility _atrix. For the sample system, the resulting motion matrix for m 3 is

[B31 =
--0.047323 -0.220797

0.220797 -0.047323
(5.12)

Note that for this application an "ideal" actuator is assumed so that pure cosine and sine motions are provided by

the actuator.

Now, by using superposition, a matrix equation can be developed which defines system motion due to the

application of an external force at the interface joint and due to actuation. This equation is

Xl c } =
Xl s

(5.13)

If

5.1.3. Impedance Matrix Development

Now an impedance matrix is developed for sample system B. The equation of motion for this simple system is

m45/4 + c3./4 + k3x4 = c3x I + k3x 1 (5.14)

x! = Xlc cos [2t + Xls sin f_t

x 4 = x4c cos f_t + x4, sin fit

(5.15)

a matrix equation may be written for the system as

llx4 t:E,oc  Ix,
k3-_'-22m3][ x4 s _c3 k3] Xl s

(5.16)

For this example, let k4 = 10.0 lb/ft, c 3 = 2.0 lb-s/ft, m 4 = 1.0 slug, and f2 = 2_z rad/s. Prescribed unit cosine and

unit sine motions of the interface joint are applied individually and equation (5.16) solved for {x 4 }. For the pre-

scribed unit cosine (xtc = 1.0, xts = 0.0) motion,
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(5.17)

For the prescribed unit sine (Xlc = 0.0, Xls = 1.0) motion,

(5.18)

However, to complete the coupling analysis, the force at the joint F 1 is necessary, not the motion of m 4. This force
is described by

Fl(t) = k3(x4- Xl) + c3('r4- Xl) (5.19)

or

Flc= k3(X4c - Xlc) + [-_c3(x4s - Xls ) [

Fls = k3(xas - Xls) + L'_c3(-Xac + Xlc)
(5.20)

The impedance matrix [C] may then be developed in a manner identical to the mobility and motion matrices

described previously. The impedance matrix is thus determined from the results of equations (5.17), (5.18), and

(5.20) as

[C] =
--5.2619 -19.0724

19.0724 -5.2619
(5.21)

Finally, the following force equation for the interface joint may be written by using the impedance matrix:

(5.22)

5.1.4. Coupled Analysis

To develop the analysis to couple systems A and B of figure 5.1, some compatibility condition must exist at

the interface joint I of each system. For this analysis, the compatibility conditions include displacement and force

at the interface joint {Xl} and {FI}, respectively. Substituting equation (5.22) into equation (5.13) to ensure that

force compatibility exists at the interface joint and solving for {xt} to ensure that displacement compatibility exists

as well give

Xl sxlc} = I[I]-[A3][C]I-I[B3 ]

lA c

lA s

(5.23)
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Substituting equation (5.23) into equation (5.22) yields the following equation for the interface force:

It I}FI_ = [C]I[I]-[A3][C] 1 [B 3] lAc
FI s lA s

(5.24)

Equations (5.23) and (5.24) represent the interface displacement and force for the completely assembled and

coupled system. The results are valid for the frequency for which the mobility matrix [A3], the motion matrix [B3],

and the impedance matrix [C] were developed. For the coupled sample system at an actuation frequency f_ of

2n rad/s, the results for IAc = 1.0, IAs = 0.0 are

Xl c
Xl s

Fie ) = {FI,

={°. 4853t0.177474

-3.6209 }-0.0784

(5.25)

Note also that x 3 = x I SO that the motion of m 3 has been obtained as well. Other system motion results may be

obtained by developing the following mobility matrix for ml:

I-0.001343 0.006917
[A1] = [_-0.006917-0.001343

(5.26)

and by using equations (5.1), (5.11), and (5.16). The results are

= { 0.0043210.025151
(5.27)

x2 s Xl s IA s

1.004321 10.025151
(5.28)

{ X4c I = [k3-_-_2m 4 _-_c 3 ]-1[ k3 _'_c31I xlc }
X4s L -['-_ C3 k3 - _')2m4 _'-_c3 k3 j [ xl_

={-0.091718 }-0.001986
(5.29)
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5.2.Comments and Observations Regarding Impedance Matching

Several characteristics of the impedance-matching method developed in section 5.1 are noteworthy. First, the

method as presented is only useful for dynamic systems undergoing steady-state forced response at discrete fre-

quencies. Second, a 1-dof response of a single location on a system is representable by a 2 x 2 matrix for each fre-
quency of interest. Therefore, for complete 6-dof response of an interface joint or other location, a 12 x 12 matrix

is necessary. Multiple 12 x 12 matrices are necessary for multiple excitation frequencies. Third, all response matri-

ces may be developed with similar techniques.

It is evident as well that a relationship exists between a mobility and an impedance matrix. To verify this rela-
tionship, one need only recall variations of equations (5.11) and (5.22) such as

{x} = [A]{F}

{F} = [C]{x}

In practice, the only reason to use both a mobility matrix and an impedance matrix is to identify the manner in

which the response matrices were developed. A mobility matrix is defined by applying a forcing function and

examining the motion response. The impedance matrix is developed by applying a motion and examining the
force response.

5.3. Application of Impedance Matching to ARES-II and Basic Research Rotor

Most techniques developed in section 5.1 are directly applicable to the analysis of the ARES-II testbed and the

BRR. However, some modifications are required to model the rotor system properly. The following sections detail
the procedures necessary to couple the two systems.

5.3.1. ARES-II Impedance Modeling

Two load paths exist for the transfer of loads between the ARES-II and the BRR. These paths include the rotor

hub connection to the mast and the swashplate connection to the main-rotor shaft and main-shaft housing. The

largest load transfers occur at the rotor hub connection. The swashplate, however, restrains the pitch links and thus

carries the loads generated by blade pitching moments and control. As shown, the swashplate loads may, at times,

represent a significant portion of the harmonic load transfer from the rotating system to the fixed system. There-

fore, to neglect these loads would introduce an uncertainty as to the validity of the model. Furthermore, because

one goal of this study is to define the loads sensed by both the rotating and the nonrotating balances, including the
swashplate load path is necessary because the rotating balance is unable to measure these loads. Note that includ-

ing the swashplate loads in the analysis represents a departure from the standard practice evident in the literature
where, almost universally, the swashplate loads are neglected.

The DADS model of the ARES-II described in section 4.1 is used to develop the necessary impedance charac-

teristics of the hub and swashplate interface joints. Within the DADS model, the two interface joints at the hub and

swashplate are included as points of interest to ease load application and to identify system response. These two
interface joints and their orientation are shown in figure 5.2. The main-rotor shaft assembly in the DADS model

can rotate. However, for this study resolving all forces and moments in the nortrotating system is convenient

because the number of frequencies required for analysis is reduced to two: 4 per rev and 8 per rev. Therefore, the
main-rotor shaft is held fixed, and a rotational joint is assumed at the interface between the mast and the rotor hub.

As a result, none of the rotational inertia of the main-rotor shaft assembly or drive system is included in the model.

These effects, however, are considered minimal when compared with the rotational inertia of the rotor system.

Additionally, because no drive system flexibility is modeled, including the drive system inertias would be rela-
tively meaningless.

5.3.1.1. Harmonic analysis. In contrast with the dynamic analysis of the ARES-II testbed presented in sec-

tion 4.1.3 in which all frequencies were excited with an initial displacement, the development of an impedance-
matching analysis requires examination of the system steady-state response due to harmonic excitation. Therefore,
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Figure 5.2. Location and orientation of interfacejoints on ARES-II pylon.

a significant amount of time-history data is generated with DADS throughout the analysis of the ARES-II testbed

to relate the excitation and response at discrete frequencies. Additionally, a reduction of the steady-state responses

to constant coefficients is necessary to develop the required impedance matrices. Because DADS is a simulation

analysis that uses a time-marching integration solution, all transient response must decay before an accurate

assessment of the steady-state amplitude of motion may be obtained. These steady-state amplitudes are often

obtained with an FFF algorithm that generally requires a substantial length of time-history data for accurate

analysis. However, since the impedance-matching analysis requires discrete frequencies of interest, an alternative

approach is suggested.

A harmonic analysis of the time-history data generated by DADS is used that is similar to the conditional sam-

pling method used in reference 7. With this method, only one complete cycle of data is necessary for analysis. The

length of the cycle must be equal to the period of the rotor rotational frequency. For the BRR, a rotor system oper-

ating at 660 rpm, this period is 0.09091 s. For accurate results, this method also requires that most transient
response has decayed. However, the harmonic analysis is much less affected by any remaining transients than the

FFT.
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Fortheanalysis,thetime-historywindowW is divided into J time steps (At = W/J) and evaluation takes place

over J + 1 samples. Sample 1 of the window is aligned in the time history with _ = 0 ° and sample J + 1 with

= 360 ° (reference blade over the tail for the first and last time steps). The index j is used to denote the time step

(i.e.,j = 1 to J + 1), and a weighting factor wj is necessary for the analysis. At the window endpoints (j = 1 and
j = J + 1), wj = l/2J, and elsewhere, wj = l/J. The components of each harmonic may then be obtained by

J+l

fc n = _ 2wjfj cosnvj

j=l

J+l

fs,, = _ 2wj fj sin n_tj
j=l

(5.30)

where n is the harmonic number, 3_ is the amplitude of the signal at the jth time step in the time history, _j is the

azimuth of the jth time step, and fc n and fs n are the cosine and sine amplitude components for the nth harmonic
of the time history.

For this study, it has been found that a simulation time of only 0.5 s is required for the decay of transient

response before good quality harmonic analysis results are obtained. Therefore, the time-history window from

which results have been obtained runs from 0.5 to 0.59091 s; this, compared with the 2.5 s of data required for FFT

analysis, represents a significant savings in computation time. This harmonic analysis approach has been used for
all cases in which time-history data analysis was required throughout this study.

5.3.1.2. ARES-H mobility matrix. Because applying a harmonic force and observing the associated displace-
ments throughout the DADS model is simpler than applying a pure harmonic displacement and observing the

forces, the necessary mobility matrices are generated directly with the DADS model of the ARES-II. To generate

a full set of mobility matrices at the two frequencies of interest, 4P and 8P, requires 12 independent executions of

the analysis. Six runs are required in which each force and moment is applied to the hub interface joint using

superimposed 4-per-rev and 8-per-rev forces and moments. An identical set of force and moment runs are required
for application of load to the swashplate interface joint. Because the analytical model of the ARES-II is com-

pletely linear, only sine excitations were used to develop the mobility matrices.

The general form for the mobility equation (eq. (5.11)) may be written for a 6-dof interface joint as

{x}

{Y}

{z}

{Ox}

{Oy}

{0 z}

-[Ax/x] lAxly] [Ax/z] [Ax/0x]

lAy�x] [Ay/y] [Ay/z ] lAy/0]

[Az/x] [Az/y] [Az/z] [Az/0 x]

[A0_/x] [Aox/y] [A0jz] [A0x/0 _]

[AOy/X] [AOy/y] [A0y/z] [A0y/0x]

[A0jx] [Aoz/y] [Aoz/z] [A0z/0 x]

[Ax/Oy] [Ax/oz]]

[Ay/Oy] [Ay/Oz] I

[Az/0y] [Az/oz]

[Aoj%] [Ao_/Oz]

[A0r/0y] [A0r/0 z]

[A0z/0y] [A0z/0 z]

{F x }

{Fy}

{F z }

{M x }

{My}

{M z}

(5.30
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where the displacement and rotation column vectors and the force and moment column vectors are each cosine and

sine pairs (i.e., {x} = {x c xs} T, {Fx} = {Fxc Fx, }T), and the mobility matrices are each 2 x 2 and represent the

displacement due to the applied force as described by the subscripts (i.e., [Ax/y] is the mobility matrix for the

x-displacement due to a force applied in the y-direction). Therefore, a single DADS run in which a forcing
function is applied to an interface joint allows the generation of one matrix column of the large matrix in

equation (5.31).

The eight 12 x 12 mobility matrices generated for the ARES-II are given in the following equations:

For hub interface joint response due to 4P hub interface joint force and moment excitation,

A

[AH/H4] = 10 -5 ×

A

q.o638-o.5832 o.oooo o.oooo iE.6_5--:61%TSi o.oooo o.oooo 0.3939 -0.027s 0.0000 0.000_
0.5832 4.0638 0.0000 0.0000:0.1072 0.0782:0.0000 0.0000 0.0275 0.3939 0.0000 0.0000
0.0000 0.0000 2.5037-0.3089 0.0000 0.0000 0.3132 0.0149 0.0000 0.0000 0.0188 0.0019

0.0000 0.0000 0.3089 2.5037 0.0000 0.0000 0.0149 -0.3132 0.0000 0.0000 -0.0019 0.0188

i_._%-:_.%T;! 0.0005 0.0000 0.2830 -0.2024 0.0000 0.0000 0.0035 -0.0053 0.0000 0.0000
i0.1073 0.0790] 0.0000 0.0005 0.2024 0.2830 0.0000 0.0000 0.0053 0.0035 0.0000 0.0000

0.0000 0.0000 -0.3132 0.0149 0.0000 0.0000 0.0446 -0.0014 0.0000 0.0000 0.0004 -0.0001

0.0000 0.0000 -0.0149 -0.3132 0.0000 0.0000 0.0014 0.0446 0.0000 0.0000 0.0001 0.0004

0.3939 0.0275 0.0000 0.0000 0.0035 -0.0053 0.0000 0.0000 0.0486 -0.0020 0.0000 O.O000i

0.0275 0.3939 0.0000 0.0000 0.0053 0.0035 0.0000 0.0000 0.0020 0.0486 0.0000 0.0000

0.0000 0.0000 0.0188 0.0019 0.0000 0.0000 0.0004 -0.0001 0.0000 0.0000 0.0462 0.0012

0.0000 0.0000 -0.0019 0.0188 0.0000 0.0000 0.0001 0.0004 0.0000 0.0000 0.0012 0.0462

(5.32a)

For hub interface joint response due to 4P swashplate interface joint force and moment excitation,

[AH/s41 = 10 5 x

B

_.3119-0.3382 0.0000 0.0000 ib-76W_u61%V{i 0.0000 0.0000 0.2391-0.0228 0.0000 0.0000
0.3382 1.3119 0.0000 0.0000 i_z_.____£_'_QTZ_] 0.0000 0.0000 0.0228 0.2391 0.0000 0.0000

0.0000 0.0000 0.4134 -0.1672 0.0000 0.0000 -0.1592 0.0104 0.0000 0.0000 0.0188 0.0019

].0000 0.0000 0.1672 0.4134 0.0000 0.0000 -0.0104 -0.1592 0.0000 0.0000 -0.0019 0.0188

).0501 -0.0637 0.0000 0.0001 0.2469 -0.2013 0.0000 0.0000 0.0034 0.0053 0.0000 0.0000

).0637 0.0501 -0.0001 0.0000 0.2013 0.2469 0.0000 0.0000 0.0053 0.0034 0.0000 0.0000

0.0000 0.0000 -0.0917 0.0072 0.0000 0.0000 0.0083 -0.0004 0.0000 0.0000 0.0004 0.0001

0.0000 0.0000 0.0072 -0.0917 0.0000 0.0000 0.0004 0.0083 0.0000 0.0000 0.0001 0.0004

0.1397 -0.0151 0.0000 0.0000 0.0034 -0.0053 0.0000 0.0000 0.0122 -0.0010 0.0000 0.0000

0.0151 0.1397 0.0000 0.0000 0.0053 0.0034 0.0000 0.0000 0.0010 0.0122 0.0000 0.0000

0.0000 0.0000 0.0218 0.0012 0.0000 0.0000 0.0004 0.0001 0.0000 0.0000 0.0108 -0.0002

0.0000 0.0000 -0.0012 0.0218 0.0000 0.0000 0.0001 0.0004 0.0000 0.0000 0.0002 0.0108

(5.32b)
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Forswashplateinterfacejoint responsedueto4Phubinterfacejoint forceandmomentexcitation,

1.3120 -0.3382 0.0000 0.0000

0.3382 1.3120 0.0000 0.0000

0.0000 0.0000 0.4134 -01672
00000 00000 0.16720.4134

B '_.6_-%1%_Yi o.oool 0.0002
0.1071 0.0782:-00002 0.0001

[Asm4] = 10-5 x 'T.-;;%-;---;%;_;_-0.1_92 o. 0104

0.0000 0.0000 -0.0104 -0.1592

0.2391 -0.0228 0.0000 0.0000

0.0228 0.2391 0.0000 0.0000

0.0000 0.0000 0.0188 0.0019

0.0000 0.0000 -0.0019 0.0188

0.0498 -0.0637 0.0000 0.0000 0.1397 -0.0151 0.0000 0.0000

0.0637 0.0498 0.0000 0.0000 0.0151 0.1397 0.0000 0.0000

0.0000 0.0000 -0.0917 0.0072 0.0000 0.0000 0.0218 0.0012

0.0000 0.0000 -0.0072 -0.0917 0.0000 0.0000 -0.0012 0.0218

0.2469 -0.2013 0.0000 0.0000 0.0034 -0.0053 0.0000 0.0000

0.2013 0.2469 0.0000 0.0000 0.0053 0.0034 0.0000 0.0000

0.0000 0.0000 0.0083 -0.0004 0.0000 0.0000 0.0004 -0.0001

0.0000 0,0000 0.0004 0.0083 0.0000 0.0000 0.0001 0.0004

0.0034 -0.0052 0.0000 0.0000 0.0122 -0.0010 0.0000 0.0000

0.0052 0.0034 0.0000 0.0000 0.0010 0.0122 0.0000 0.0000

0.0000 0.0000 0.0004 -0.0001 0.0000 0.0000 0.0108 -0.0002

0.0000 0.0000 0.0001 0.0004 0.0000 0.0000 0.0002 0.0108

(5.32c)

For swashplate interface joint response due to 4P swashplate interface joint force and moment excitation,

[As/s4]= 10_ x

---1.6600 -2.1453 0.0002 0.0000 0.4965 -0.6367 0.0000 0.0000 1.3877 -0.1484 0.0000 0.0000

2.1453 1.6600 0.0000 0.0002 0.6367 0.4965 0.0000 0.0000 0.1484 1.3877 0.0000 0.0000

-0.0001 0.0000 -3.3920 -1.0835 -0.0001 0.0000 -0.9123 0.0704 0.0000 0.0000 0.2177 0.0125

0.0000 -0.0001 1.0835 -3.3920 0.0000 -0.0001 -0.0704 -0.9123 0.0000 0.0000 -0.0125 0.2177

0.4979 -0.6374 0.0019 -0.0001 2.4687 -2.0124 0.0000 0.0000 0.0341 -0.0525 0.0000 0.0000

0.6374 0.4979 0.0001 0.0019 2.0124 2.4687 0.0000 0.0000 0.0525 0.0341 0.0000 0.0000

0.0000 0.0000 -0.9123 0.0704 0.0000 0.0000 0.0821 -0.0040 0.0000 0.0000 0.0037 -0.0008

0.0000 0.0000 -0.0704 -0.9123 0.0000 0.0000 0.0040 0.0821 0.0000 0.0000 0.0008 0.0037

1.3877 -0.1484 0.0000 0.0000 0.0341 -0.0524 0.0000 0.0000 0.1212 -0.0096 0,0000 0.0000

0.1484 1.3877 0.0000 0.0000 0.0524 0.0341 0.0000 0.0000 0.0096 0.1212 0.0000 0.0000

0.0000 0.0000 0.2176 0.0125 0.0000 0.0000 0.0037 -0.0008 0.0000 0.0000 0.1079 -0.0021

0.0000 0.0000 -0.0125 0.2176 0.0000 0.0000 0.0008 0.0037 0.0000 0.0000 0.0021 0.1079

For interface joint response due to 8P hub interface joint force and moment excitation,

(5.32d)

[AH/Ha ] = 10 -4 x

---O.lO67 -0.0372 o.oooo o.oooi 0.0333 0.0220 o.oooo o.oooo o.o117

o.o372 -O.lO67 -o.oool 0.0000 -0.0220 0.0333 0.0000 0.0000 0.0022

0.0000 0.0000 0.6536 -1.795o 0.0000 o.oooo -0.0348 0.0523 0,0000

0.0000 0.0000 1.795o 0.6536 0.0000 0.0000 -0.0523 -o.o348 0.0000

0.0334 0.0220 o.oool -0.0002 -o.1544 -o.o218 0.0000 0,0000 0.0007

-o.o22o 0.0334 0.0002 o.oooi o.o218 -o.1544 o.oooo o.oooo -o.oolo

0.0000 0.0000 -0.0348 0.0523 0.0000 0.0000 0.0043 -o.oo17 0.0000

0.0000 0.0000 -0.0523 -0.0348 0.0000 0.0000 o.oo17 0.0043 0.0000

o.o117 -0.0022 0.0000 0.0000 -0.0007 o.oolo 0.0000 0.0000 0.0036

0.0022 o.o117 0.0000 0.0000 -o.oolo -0.0007 0.0000 0.0000 0.0003

0.0000 0.0000 0.0862 -0.2237 0.0000 0.0000 0.0026 0.0064 0.0000

0.0000 0.0000 0.2237 0.0862 0.0000 0.0000 -0.0064 -0.0026 o.oooo

-0.0022

o.0117

o.oooo

o.o00o

o.oolo

-0.0007

o.oooo

0.0000

-0.0003

0.0036

0.0000

0.0000

0.0000 0.000_

0.0000 0.0000

0.0859 -0.2239

0.2239 0.0859

0.0000 0.0000

0.0000 0.0000

-0.0026 0.0064

-0.0064 0.0026

0.0000 0.0000

0.0000 0.0000

0.0131 0.0286

0.0286 0.0131
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For hub interface joint response due to 8P swashplate interface joint force and moment excitation,

[AH/ss ] = 10 4 x

---0.1530 -0.0170 0.0000 0.0001 0.0333 0.0220 0.0000 0.0000 -0.0033 -0.0013

0.0170 -0.1530 -0.0001 0.0000 -0.0220 0.0333 0.0000 0.0000 0.0013 -0.0033

0.0000 0.0000 0.4239 -1.3717 0.0000 0.0000 0.0184 0.0477 0.0000 0.0000

0.0000 0.0000 1.3717 0.4239 0.0000 0.0000 -0.0477 -0.0184 0.0000 0.0000

0.0395 0.0141 0.0001 -0.0001 -0.1578 -0.0216 0.0000 0.0000 -0.0008 0.0009

0.0141 0.0395 0.0001 0.0001 0.0216 -0.1578 0.0000 0.0000 -0.0009 -0.0008

0.0000 0.0000 -0.0139 0.0394 0.0000 0.0000 0.0007 -0.0014 0.0000 0.0000

0.0000 0.0000 -0.0394 -0.0139 0.0000 0.0000 0.0014 0.0007 0.0000 0.0000

0.0036 -0.0008 0.0000 0.0000 -0.0007 0.0010 0.0000 0.0000 0.0000 0.0001

0.0008 -0.0036 0.0000 0.0000 -0.0010 -0.0007 0.0000 0.0000 0.0001 0.0000

0.0000 0.0000 0.0655 -0.1724 0.0000 0.0000 -0.0025 0.0059 0.0000 0.0000

0.0000 0.0000 0.1724 0.0655 0.0000 0.0000 -0.0059 -0.0025 0.0000 0.0000

0.0000 0.000_

0.0000 0.0000

0.0859 -0.2237

0.2237 0.0859

0.0000 0.0000

0.0000 0.0000

0.0026 0.0064

-0.0064 -0.0026

0.0000 0.0000

0.0000 0.0000

0.0096 -0.0284

0.0284 0.0096

(5.32f)

For swashplate interface joint response due to 8P hub interface joint force and moment excitation,

[As/Hg ] = 10 4 X

---0.1530 -0.0170 0.0000 0.0001 0.0394 0.0141 0.0000 0.0000 -0.0036

0.0170 -0.1530 -0.0001 0.0000 -0.0141 0.0394 0.0000 0.0000 0.0008

0.0000 0.0000 0.4237 -1.3717 0.0000 0.0000 -0.0139 0.0394 0.0000

0.0000 0.0000 1.3717 0.4237 0.0000 0.0000 -0.0394 -0.0139 0.0000

0.0333 0.0220 0.0001 -0.0002 -0.1578 -0.0216 0.0000 0.0000 -0.0007

-0.0220 0.0333 0.0002 0.0001 0.0216 -0.1578 0.0000 0.0000 0.0010

0.0000 0.0000 -0.0184 0.0477 0.0000 0.0000 0.0007 -0.0014 0.0000

0.0000 0.0000 -0.0477 -0.0184 0.0000 0.0000 0.0014 0.0007 0.0000

-0.0033 -0.0013 0.0000 0.0000 -0.0008 0.0009 0.0000 0.0000 0.0000

0.0013 -0.0033 0.0000 0.0000 -0.0009 -0.0008 0.0000 0.0000 0.0001

0.0000 0.0000 0.0861 -0.2235 0.0000 0.0000 -0.0026 0.0064 0.0000

0.0000 0.0000 0.2235 0.0861 0.0000 0.0000 -0.0064 -0.0026 0.0000

-0.0008 0.0000 0.000_

-0.0036 0.0000 0.0000

0.0000 0.0652 -0.1725

0.0000 0.1725 0.0652

0.0010 0.0000 0.0000

-0.0007 0.0000 0.0000

0.0000 -0.0025 0.0059

0.0000 0.0059 -0.0025

-0.0001 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0096 -0.0284

0.0000 0.0284 0.0096

(5.32g)

For swashplate interface joint response due to 8P swashplate interface joint force and moment excitation,

[Asm8] = 10 -4 x

0.1242 -0.0107 0.0000 0.0000

0.0107 -0.1242 0.0000 0.0000

0.0000 0.0000 0.3138 -1.0547

0.0000 0.0000 1.0547 0.3138

0.0395 0.0141 0.0000 -0.0001

-0.0141 0.0395 0.0001 0.0000

0.0000 0.0000 -0.0131 0.0366

0.0000 0.0000 -0.0366 -0.0131

i O 0033 -0.0008 0.0000 0.0000

0.0008 0.0033 0.0000 0.0000

0.0000 0.0000 0.0654 -0.1723

0.0000 0.0000 0.1723 0.0654

0.0394 0.0141 0.0000 0.0000 -0.0033 -0.0008 0.0000 0.000_

0.0141 0.0394 0.0000 0.0000 0.0008 -0.0033 0.0000 0.0000

0.0000 0.0000 -0.0131 0.0365 0.0000 0.0000 0,0652 -0.1724

0.0000 0.0000 -0.0365 -0.0131 0.0000 0.0000 0.1724 0.0652

0.1577 -0.0216 0.0000 0.0000 -0.0008 0.0009 0.0000 0.0000

0.0216 -0.1577 0.0000 0.0000 -0.0009 -0.0008 0.0000 0.0000

0.0000 0.0000 0.0006 -0.0013 0.0000 0.0000 -0.0025 0.0059

0.0000 0.0000 0.0013 0.0006 0.0000 0.0000 -0.0059 -0.0025

-0.0008 0.0009 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000

-0.0009 -0.0008 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

0,0000 0.0000 -0.0025 0.0059 0.0000 0.0000 0.0096 0.0284

0.0000 0.0000 -0.0059 -0.0025 0.0000 0.0000 0.0284 0.0096

(5.32h)

The subscripts of the mobility matrix designate the type of mobility information that the matrix contains. The sub-

script to the left of the slash indicates the joint at which the response is measured; the subscript to the right of the

slash indicates the joint at which the forcing function is applied. The numeric subscript indicates the frequency of
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excitation in per rev. For example, equation (5.32b) represents the mobility of the hub joint due to a 4P forcing

function applied at the swashplate joint.

Significant physical insight regarding the ARES-II response may be obtained by studying the mobility matri-

ces presented in equations (5.32). The reader is referred to equation (5.32a), which presents the hub joint response

due to 4P hub joint excitations. The first two columns of this matrix identify the response of the hub joint when

subjected to a 4P axially directed load. As shown in rows 1 and 2, the axial response is dominant. Rows 5, 6, 9, and

10, however, indicate that normal (vertical) and pitch responses are excited as well. Similarly columns 3 and 4

identify the response of the hub joint when subjected to a 4P side-directed load. The response is primarily to the
side; however, coupling exists both in roll (rows 7 and 8) and in yaw (rows 11 and 12).

Out-of-phase results are evident in the 8-per-rev mobility matrices (eqs. (5.32e) through (5.32h)). In

equation (5.32e), for instance, the 8P side-directed load at the hub results in a side response that is 70 ° out of phase

with the force; this is due to the proximity of the forcing function frequency (8P or 88 Hz) to the elastic yaw-side-
roll mode at 90 Hz (refer to table 4.1 and fig. 4.4).

Two further comments regarding the mobility matrices of equations (5.32) are warranted. First, these matrices

have not been generated with a unit sine forcing function as used in section 5.1.1. Since the ARES-II is a relatively

stiff structure, minimal response would have been generated by a unit load. Therefore, larger excitation loads were

used and the results presented in equations (5.32) normalized to obtain the displacement-per-unit-load values. Sec-
ond, the results are not entirely indicative of a strictly linear system. Note the submatrices labeled A in

equation (5.32a) and the submatrices labeled B in equations (5.32b) and (5.32c). Ideally, the two submatrices
labeled A would be identical as would the submatrices labeled B. However, these minor differences exist because

of small errors inherent in the DADS and harmonic analysis solutions. The differences are considered minor and

no action has been taken to adjust them or to prevent their occurrence.

Finally, a mobility matrix is generated for the entire ARES-II system with the matrices in equations (5.32). A

two-step process is used for clarity. First, a mobility matrix is generated for both the 4P and the 8P equations as
follows:

[A4] = -[AH/H4] [AH/s4|]']

[As�H4] [As/s4]J

[As] [AH/H8 ] [AH/Ssq

[As�H8] [As/%]J

(5.33)

Second, the final assembly of the system mobility matrix occurs as

[A] = [[A4] [0]] (5.34)
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Thecompletedmobilityequation,then,is

{Xn 4}

{Ks4}

{Xn 8}

{XSs} a

where

= [A]

{FH.}I

{Fs.}l

{FHo}I

{Fso}I

(5.35)

f lT{XH"} = XHnc XHns YHnc YHns ZHnc ZHns OXHnc OXHns OyHnc OyHns OzHnc OZHns

{Xs.} = {Xs.c Xs,,, Ys.c Ys.s Zs.c Zs.. Oxs c Oxss OySnc OYSns OZSnc OZSns}T

{FH.} = {FXHnc Fxnns FYHnc FyHns FZH FZHns Mxn Mx H My H My H Mz H
nc nc n$ Flc n$ _c

{Fs.' = {Fxs c Fxs $ Fys c Fys $ Fzsnc Fzs $ Mxs.c Mxs $ Mys c Mys $ Mzs c MZs.$ }T

MZHn s }T

5.3.1.3. ARES-H motion matrix. The motion matrix is developed by actuating the ARES-II model in each of

the three translational and three rotational motions individually, then processing the response at the hub and

swashplate interface joints. Thus, only six DADS runs are required, one for each motion. The actuated motion

analysis developed in section 4.1.2 is used to generate the actuator schedules for the motions. For translational
motions a nominal amplitude of 0.01 in. is used, and for rotational motions a nominal amplitude of 0.05 ° is used.

All motions are actuated at 4 per rev by using sine excitations. The resulting response at each of the interface joints

is analyzed by using the harmonic analysis, then scaled by the appropriate input amplitude to provide a

displacement-per-unit-displacement relationship. These relationships are used to generate a motion matrix for the

hub [BH4] and the swashplate [Bs4] interface joints. These two component matrices are shown in the following
equations:

For hub interface joint response due to 4P pylon actuation,

011nn]=

---0.6944 0.0819 0.0007 0.0000 0.5361 0.0988 0.0017 -0.0018 26.7396 -0.9595 -0.0004 0.0014

0.0819 0.6944 0.0000 0.0007 0.0988 0.5361 0.0018 0.0017 0.9595 26.7396 -0.0014 -0.0004

0.0118 -0.0011 0.6180 -0.0608 0.0118 -0.0011 -17.8883 -0.1389 0.1335 -0.0128 0.3049 2.1252

0.0011 0.0118 0.0608 0.6180 0.0011 0.0118 0.1389 -17.8883 0.0128 0.1335 -2.1252 0.3049

0.0038 -0.0054 -0.0001 0.0000 1.0305 -0.1051 0.0007 -0.0001 0.7274 -0.6736 -0.0006 0.0010

0.0054 0.0038 0.0000 -0.0001 0.1051 1.0305 0.0001 0.0007 0.6736 0.7274 -0.0010 0.0006

-0.0001 0.0000 -0.0084 0.0020 -0.0001 0.0000 1.0898 0.0032 0.0014 0.0001 -0.0106 0.0475

0.0000 -0.0001 -0.0020 -0.0084 0.0000 -0.0001 -0.0032 1.0898 -0.0001 -0.0014 -0.0475 -0.0106

0.0116 -0.0030 0.0000 0.0000 0.0268 -0.0045 0.0001 -0.0001 1.5320 -0.0439 0.0000 0.0001

0.0030 0.0116 0.0000 0.0000 0.0045 0.0268 0.0001 0.0001 0.0439 1.5320 -0.0001 0.0000

0.0000 0.0000 -0.0113 0.0007 0.0000 0.0000 -0.0395 0.0022 -0.0001 0.0000 1.3329 -0.0088

0.0000 0.0000 -0.0007 -0.0113 0.0000 0.0000 -0.0022 -0.0395 0.0000 -0.0001 0.0088 1.3329

(5.36a)
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For swashplate interface joint response due to 4P pylon actuation,

[Bs4] =

--0.6000 -0.0573 0.0006 0.0000 0.3162 -0.0617 0.0013 -0.0013 14.1799 -0.5953

0.0573 0.6000 0.0000 0.0006 0.0617 0.3162 0.0013 0.0013 0.5953 14.1799

0.0107 -0.0010 0.5498 -0.0446 0.0107 -0.0010 -8.9523 -0.1156 0.1219 -0.0116

0.0010 0.0107 0.0446 0.5498 0.0010 0.0107 0.1156 -8.9523 0.0116 0.1219

0.0038 -0.0054 0.0000 0.0000 1.0302 -0.1050 0.0007 -0.0006 0.7257 -0.6732

0.0054 0.0038 0.0000 0.0000 0.1050 1.0302 0.0006 0.0007 0.6732 0.7257

-0.0001 0.0000 -0.0081 0.0019 -0.0001 0.0000 1.0808 0.0035 -0.0014 0.0001

0.0000 -0.0001 -0.0019 -0.0081 0.0000 -0.0001 -0.0035 1.0808 -0.0001 -0.0014

0.0112 -0.0029 0.0000 0.0000 0.0266 -0.0045 0.0001 -0.0001 1.5185 -0.0430

0.0029 0.0112 0.0000 0.0000 0.0045 0.0266 0.0001 0.0001 0.0430 1.5185

0.0000 0.0000 -0.0112 0.0007 0.0000 0.0000 -0.0395 0.0022 -0.0001 0.0000

0.0000 0.0000 -0.0007 -0.0112 0.0000 0.0000 -0.0022 -0.0395 0.0000 -0.0001

-0.0003 0.0009-

-0.0009 -0.0003

0.2184 2.5199

-2.5199 0.2184

-0.0002 0.0010

-0.0010 -0.0002

-0.0105 0.0487

-0.0487 -0.0105

0.0000 0.0001

-0.0001 0.0000

1.3326 -0.0088

0.0088 1.3326

The motion matrix defining the 4-per-rev response is

(5.36b)

[B4] =
-[BH4 ] [0] ]

[0] [Bs4]J

(5.37)

Therefore, since 8-per-rev motions are not actuated, developing additional matrices for the 8P response is unnec-

essary. The completed ARES-II system motion matrix is

[B] = [[B4] [0q

L[0] [I]J
(5.38)

where the identity matrix is necessary to expand the matrix size to 48 x 48 like the mobility matrix [A].

To drive the ARES-II by using the motion matrix [B] a control vector {U} is necessary. This control vector is

a 12-element vector defining the cosine and sine components of the desired motions of the simulated c.g. referred

to in section 4.1.2. However, because of the manner in which the motion matrix has been developed (i.e., [B H ]

and [Bs4 ] on the diagonal), it is necessary to use the vector twice. Therefore, the completed motion equation is 4

- .

{XS4} = I{XH s }

L(o}j
{Xss} s

where the vectors X were defined in equation (5.35), and

(5.39)

{U} = {Ux c Ux s Uy c Uy s Uz c Uz s UOxc UOxs UOy c UOy s UOzc UOzs} T

5.3.2. Basic Research Rotor Impedance Model

The CAMRAD-II model discussed in section 4.2 is used to develop the impedance model of the BRR. The

development of the impedance matrix is, however, more complicated than that required for the sample system of
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section5.1.3.Severalfactorsmustbe considered.First,therotor systemis an inherentlynonlinearsystem.
Therefore,to applyan impedance-matchingapproachto a rotorsystem,caremustbeusedto ensurethatthe
responseis withina linearrange.Thisrequirestheestablishmentof asteady-state,fixed-hub(ormotionlesshub)
conditionaboutwhichsmallperturbationsmaybemade.Therefore,theloadsattherotorsystemhubandswash-
plateinterfacejointsrepresenttheloadsduetotheoperationatthefixed-hubconditionplusanincrementalload
duetothemotionof therotorsystem.Second,becausetherotorcontrolsystem(i.e.,pitchlinksandswashplate)is
masslessin theCAMRAD-IImodelof theBRR,theswashplateinterfacejoint loadsaredependentonlyuponthe
aerodynamicanddynamicforcesin therotorsystem.Therefore,theimpedanceequationmustgenerateforcesand
momentsatboththehubandswashplateinterfacejointsbasedonthefixed-hubconditionloadsandmotionatthe
hubjoint.Noadditionalloadscausedby motionof theswashplateareintroduced.Finally,it mustberecognized
that4Phubmotionsgeneratechangesinboth4Pand8Ploadsbecauseof thechangingaerodynamicenvironment.
Thesamemaybesaidof 8Phubmotions.Thiscrosscouplingmustbeconsideredin thedevelopmentof the
impedancematrix.

5.3.2.1. Fixed-hub load conditions. The choice of meaningful fixed-hub, or motionless hub, load conditions is

an important aspect of the impedance-matching approach because, in general, the developed impedance matrices

are valid only for a small motion about the fixed-hub condition due to system nonlinearity. For this study, a set of

flight conditions that are representative of lg steady flight for a helicopter with gross weight of 8000 lb has been

chosen. The performance parameters required to match these conditions are provided as a function of advance

ratio Ix in table 5.1. CAMRAD-II runs are made for each advance ratio; this allows trim procedures internal to

CAMRAD-II to converge to control positions that satisfy the performance parameters. For each of these runs, the

rotor is trimmed so that first-harmonic flapping is removed with respect to the rotor shaft, a procedure typical in

model rotor system analysis. At each of the flight conditions, the resulting control positions are recorded and a

fixed-hub load vector consisting of the 4- and 8-per-rev hub and swashplate loads is defined. This vector is

denoted by {F0} and is generated as shown in the following equation:

I FH4} t

{Fs 4 }

{F0} = {FMs }

{Fs 8}

(5.40)

5.3.2.2. Hub motion load conditions. Because rotor systems are inherently nonlinear, no assurance exists that

an impedance matrix can be developed by using only a cosine or a sine excitation as for fully linear systems. This

study determined that it is necessary, in general, to consider both cosine and sine excitations in the development of

an impedance model of a rotor system. A similar approach has been observed in the literature (e.g., ref. 6). This

requirement is most likely because of the nonlinear effects introduced to the rotor system by the vortex wake; this

is supported by the rotor impedance matrices developed for the flight speed range in which the rotor system

Table 5.1. Performance Parameters for Fixed-Hub

Load Conditions

p. C L CD

0.05
0.10
0.15
0.20
0.25
0.30
0.35

0.0058
0.0058
0.0058
0.0058
0.0058
0.0058
0.0058

-0.000011

--0.000043

-0.000098

-0.000174

-0.000256

-0.000392

-0.000533
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behavior is considered to be the most linear 0.15 < I.t < 0.30. For these flight conditions, the rotor impedance matri-

ces were found to be more typical in form to those developed for fully linear systems. Additionally, CAMRAD-II

runs made with a uniform inflow distribution undisturbed by a vortex wake were observed to produce impedance

matrices typical in form to those for linear systems. Comprehending the nature of this effect would require study

beyond the scope of this research. For this study, it was necessary to excite a rotor system with both cosine and

sine hub motions for all flight conditions to develop an appropriate rotor impedance model.

A series of 24 CAMRAD-II runs is made for each advance ratio to define the load characteristics of the BRR

under hub motion. These runs include individual cosine and sine excitations for the three translations and the three

rotations at both 4P and 8P. For translational hub excitations, an amplitude of 0.01 in. is used, and for rotational

hub excitations, an amplitude of 0.05 ° is used. Because pure hub motions are required to develop these loads,

inputting both translational and rotational motions is necessary in order to obtain pure rotational hub motion with

the CAMRAD-II model of the BRR. The actuated pylon joint (fig. 4.5) is placed below the hub so that input rota-

tional motion induces both rotation and translation at the hub. For each of the runs, the control positions generated

for the fixed-hub conditions were used. In no case did the actuated motion cause the f'trst-harmonic flapping with
respect to the shaft to go out of trim by more than 0.1 o.

5.3.2.3. Generating impedance matrix. Because the impedance matrix should permit the calculation of inter-

face loads due to hub motion only, accounting for the fixed-hub loads is necessary when the impedance matrix is
developed. Mathematically, this is written as

{FI} = {Fo}+ [C]{XÂ} (5.41)

Therefore, to develop the impedance matrix [C], the equation

{F/b} - {Fob }

[Cab] = {X/a } ( a = 1, 2 ..... 6; b = 1, 2 ..... 6) (5.42)

is used where the subscripts a and b denote matrix element location.

For clarity, a two-step process is employed to develop the rotor system impedance matrix. First, matrices are

developed based on harmonic response due to harmonic excitation. These matrices are shown in the following
equations:

[C4/4] = iCn4/4] [0/1]

[ Cs4/4 ] [0]J

[C8/4] __ I[CH8/4] [0]1

L[ CS8/41 [0]J

c4/8 = c/ ,j s [0|]]

Cs4/s [0]]

C8/8 CHs/s [0_

Cs8/8 [0]_]

(5.43)

The subscripts denote the interface joint for the response (H for hub and S for swashplate), the response harmonic
to the left of the slash, and the excitation harmonic to the right of the slash. The matrices [0] are used because the

impedance load at the interface joints depends on hub joint motion but not swashplate joint motion. Second, the
final assembly of the system impedance matrix occurs as follows:

[C] = -[C4/4 ] [C4/8] 1

[C8/4] [C 8/8]J

(5.44)
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A setof the component matrices required to develop the impedance matrix for p = 0.10, a highly nonlinear

flight condition, is shown in the following equations:

For 4P hub interface joint loads due to 4P hub actuation,

[CH4¢4 ] : 10 4 X

i

0.8256 0.0125:-0.0013 -0.0246 0.0114 -0.0073 -0.0087 0.0204 -0.0785 -0.0176 -0.0993 0.0703

=9.:oAo2__9_._898.6:0,0202 0.0037 0.0178 0.0024 0.0375 0.0282-0.0376-0.0751-0.1081 0.0144

-0.0046 0.0253 0.8226 0.0106 0.0097 0.0017 0.0702 0.0055 -0.0448 -0.0176 -0.0757 0.0274

-0.0238 -0.0028 -0.0129 0.8262 0.0127 0.0100 0.0212 0.0545 0.0139 -0.0288 -0.0967 -0.0243

-0.0011 0.0022 -0.0014 -0.0016 0.7547 0.0335 0.0280 0.0207 -0.0193 -0.0262 -0.0803 -0.0848

-0.0015 0.0008 -0.0019 0.0002 -0.0203 0.7363 0.0008 -0.0048 -0.0605 -0.0221 0.0345 0.0518

-0.0377 -0.0310 -0.0398 -0.0118 0.0652 -0.0781 4.7546 1.1236 0.0286 -0.9574 -0.5711 0.6210

0.0259 0.0198 0.0031 0.0337 0.1344 -0.0843 -0.5825 4.6405 0.6463 -0.4314 -0.8440 0.5540

-0.0501 0.0509 -0.1226 -0.1342 0.2925 0.1655 -0.1202 1.2477 3.5257 0.0922 -2.8765 0.2625

-0.0037 0.0081 0.0302 -0.0526 0.2203 0.0835 -0.5749 -0.0619 0.8938 4.2094 -1.5096 -0.0426

-0.0288 0.0112 0.0342 0.0002 0.4766 -0.1810 -0.0143 0.3993 0.2083 -0.0580 -0.1922 6.7245

0.0035 -0.0055 0.0127 -0.0312 0.4258 0.4290 -0.1431 -0.2952 0.4960 -0.0067 -8.1871 0.5865

For 4P hub interface joint loads due to 8P hub actuation,
(5.45a)

m

0.0001

-0.0012

-0.0004

0.0000

0.0123

0.0081

[CH¢81= 10 4X -0.0002

0.0008

-0.0061

-0.0018

-0.0433

-0.0225

-0.0021 -0.0005 0.0009 0.0003

0.0009 -0,0001 0.0016 -0.0003

-0.0031 -0.0018 -0.0031 0.0025

-0.0016 0.0010 0.0026 -0.0004

0.0137 0.0178 0.0163 0.0083

0.0144 0.0001 0.0062 0.0004

0.0328 0.0094 -0.5996 0.0089

0.0017 0.0148 0.1827 -0.0237

-0.0342 -0.0050 -1.3330 -0.0319

-0.0342 -0.0011 -0.2651 0.0178

-0.1293 0.0736 3.7321 0.0290

-0.0490 0.0145 0.4054 0.0243

-0.0001 0.0017 -0.0073 -0.0065

0.0000 0.0036 -0.0176 -0.0041

0.0001 -0.0120 -0.0072 -0.0213

0.0065 0.0147 -0.0138 -0.0048

0.0228 -0.0216 0.0508 0.1349

0.0076 -0.0580 0.0743 0.0399

0.0690 0.0967 -0.1441 0.3468

-0.0190 0.0333 0.1566 0.1226

-0.0337 -0.0673 0.0509 -0.1552

-0.0391 0.0763 0.1101 -0.4218

-0.1371 0.1951 -0.3260 -0.8648

-0.0209 0.3279 -0.4412 0.0135

For 8P hub interface joint loads due to 4P hub actuation,

0.0266 0.0021 0.0052

0.0203 -0.0048 0.0128

-0.0067 -0.0060 -0.0248

0.0216 0.0067 0.0022

0,1138 0.1316 0.1348

0.0009 -0.0408 0.0519

0.4883 0.1241 0.3411

0.1036 -0.0639 0.0890

-0.0565 -0.2739 -0.2546

-0.3658 0.0437 -0.4112

-0.6110 0.5392 0.9326

0.5080 0.4125 0.0675

(5.45b)

[CH_4] = 104 X

0.0026 0.0041 0.0026 0.0002 0.0065

0.0031 0.0035 0.0041 0.0040 0.0061

-0.0059 -0.0068 -0.0072 -0.0047 -0.0067

-0.0001 -0.0005 -0.0010 -0.0047 0.0041

0.0089 0.0056 0.0067 -0.0081 0.0021

0.0421 0.0353 0.0361 0.0263 0.0658

0.0190 -0.0275 -0.0222 -0.0099 -0.0319

0.0182 0.0201 0.0046 0.0041 0.0254

0.0055 0.0020 0.0090 0.0205 0.0029

-0.0316 -0.0295 -0.0300 -0.0100 -0.0455

0.1271 -0.0838 0.0992 0.0847 -0.1850

0.1380 0.1093 0.1083 0.0473 0.1829

0.0035 0.0180 0.0582 0.0600

0.0036 0.0464 0.0447 0.0952

-0.0042 -0.0494 -0.0587 -0.1429

0.0035 -0.0285 0.0238 -0.0346

0.0129 0.1674 0.1394 0.0401

0.0224 0.5152 0.6610 0.7478

-0.0152 -0.1804 -0.1851 -0.3536

0.0081 -0.0127 0.3161 0.3670

0.0179 0.1391 -0.0041 0.5911

-0.0468 -0.3246 -0.2295 -0.7601

-0,0398 -1.4289 -1.4209 -2.1158

0.1200 1.6127 2.0162 2.3352

0.0303 0.0019 0.0297

0.0823 0.0438 0.0204

0.1259 -0.0532 -0.0539

-0.0195 -0.0543 -0,0140

0.0552 -0.1283 0.0938

0.8181 0.2448 0.2691

-0.3439 0.1058 0.0397

0.1848 0.0291 0.4987

0.1475 0.3062 -0.0986

-0.4087 0.1365 -0.2660

-2.2583 -1.1741 0.8416

2.6169 0.5789 1.1202

(5.45c)
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For 8P hub interface joint loads due to 8P hub actuation,

[CHs/s] = 10 5 ×

0.3497 -0.0107 0.0051 0.0005 0.0004 0.0008

0.0113 0.3502 -0.0070 0.0154 0,0150 0.0010

-0.0053 -0.0084 0.3488 -0.0264 -0.0251 -0.0031

0.0072 -0.0052 0.0108 0,0073 0.0066 -0.0010

-0.0007 -0.0005 -0.0004 0.0559 0.0540 -0.0410

0.0034 0.0061 0,0049 0.0050 0.0036 0.3381

0.0025 -0.0052 -0,0055 0.0079 -0.0040 0.0004

0.0039 0.0065 -0.0008 0.2161 0.0013 0.0001

0.0058 -0.0019 0.0032 -0.3078 -0.0007 -0.0002

0.0011 0.0008 -0.0026 0.0968 0.0006 -0.0048

-0.0136 -0.0186 -0.0139 0.6445 -0,0649 -0.1811

0.0057 0.0144 0.0120 0.2088 0.1645 -0.0453

For 4P swashplate interface joint loads due to 4P hub actuation,

0.0020 0.0027

-0.0046 0.0052

-0.0231 0.0041

-0.0068 -0.0287

0.0082 -0.0129

-0.0233 0.0084

2.1830 -0.0639

0.0557 2.1796

0.0233 0.0659

-0.0323 0.0179

0.1166 -0.0568

-0.0409 0.0240

m

0.0291 -0.0054 0.0066 0.0029

0.0164 0.0300 0.0065 0.0057

-0.0109 -0.0009 -0.0112 -0.0099

-0.0057 0.0005 -0.0022 -0.0041

0.0012 0.0056 -0.0436 -0.1086

0.0747 0.0503 0.1639 0.0015

-0.0627 -0.0535 -0.0332 -0.0610

0,0532 -0.0209 0.0467 -0.0032

2.1922 -0.0437 0.0088 0.0295

0.0009 2,1769 -0.0492 -0.0363

-0,2078 -0.1365 6.1916 -3.2330

0.2184 0.1697 3.2380 6.4803

(5.45d)

[Cs_4] = 10 3 X

m

-0.0138 0.0021 -0,0051 -0.0018 -0.0075 -0.0019

-0.0060 0.0093 -0,0010 -0.0047 -0.0032 0.0046

0.0010 -0.0033 -0.0036 0.0006 -0.0035 0.0017

0.0089 0.0079 0.0020 -0.0019 0.0073 0.0045

0.0194 -0.0190 0,0300 -0.0326 -0.0696 -0.0342

0.0254 0.0325 0.0304 0.0532 0.0583 -0.0568

0.2049 -0.0415 0.0668 0.0273 0.0981 0.0300

0.1129 0.1581 0.0204 0.0663 0.0707 -0.0579

0.0236 0.0437 0.0662 -0.0022 0.0759 -0.0184

-0.1143 -0.0912 -0.0286 0.0388 -0.1001 -0.0745

0.0048 -0.0051 0.0084 -0.0093 -0.0197 -0.0098

0.0064 0,0083 0.0084 0.0149 0.0159 -0.0161

-0.0543 0,1119 0.1151 -0.1799 0.0212 -0.0745

-0.2261 -0.0119 0.0514 0.1905 0.0058 0.0565

-0.3062 0.0576 -0.0228 0.1821 0.0442 0.0526

0.0474 -0.1903 -0.0988 0.0913 -0.0157 0.1211

-0.0882 0.1642 -0.2141 -0.0552 -3.6747 -1.4332

-0.0284 0.0396 0.0575 0.5948 1.7857 -3.0352

-0.0712 -1.4626 -1.7935 3.1471 -0.3432 1.0809

3.1639 -0.3705 -1.0518 -2.5459 0.0485 -0.6286

4.6688 -1.1728 0.0187 -2.1509 -0.4502 -0.5214

1.3385 2.8577 1,3036 -1.8980 0.1669 -1.7056

-0.0085 0.0476 -0.0538 -0.0340 -1,0384 -0.4082

-0.0150 0.0221 0.0248 0.1705 0,5031 -0.861:

For 4P swashplate interface joint loads due to 8P hub actuation,

(5.45e)

[Cs, ws] = 10 3 x

-0.0082 -0.0079 -0.0032 -0.0042 -0.0033 -0.0069

-0.0016 -0.0036 0.0015 0.0005 0.0017 -0.0043

-0.0014 -0.0049 0.0014 0.0029 0.0027 -0.0027

0.0057 0.0070 0.0010 0.0061 0,0041 0.0075

-0.0477 -0.0106 -0.0460 -0.0313 -0.0075 -0.0234

-0.0140 0.0367 0.0490 -0.0029 0.0168 0.0613

0,1124 0.1027 0.0498 0.0672 0.0554 0,0927

0.0400 0.0732 -0.0167 0.0103 -0.0129 0.0873

0,0452 0.0939 -0.0085 -0.0289 -0.0288 0.0603

-0.0771 -0.0944 -0.0199 -0.0908 -0.0648 -0.0997

-0.0137 -0.0030 -0,0132 -0.0091 -0.0024 -0.0067

-0.0044 0.0098 0.0138 -0,0011 0.0045 0.0167

0.0169 -0.0245 -0.1007 -0.0731 -0.1062 -0.0763

0.0225 -0.0337 -0.0182 -0.0499 0.0066 -0.0812

0.0174 -0.0378 -0,0272 -0.0183 -0.0081 -0.1002

0.0053 -0.0121 0.0850 0.0699 0.1088 0.0464

0.0949 -0.5579 -0.2422 0.1665 -0,1210 -0.1945

-0.0048 0.1159 0.2004 0.1439 0.2055 0.1151

-0.1926 0.2197 1.3875 1.0121 1.5158 0.8231

-0.3101 0.4783 0.5247 0.9226 0.2210 1.3114

-0.3016 0.6659 0.6928 0.4599 0,4292 1.6796

-0.1600 0.2726 -1.1909 -0.8928 -1.6105 -0.4436

0.0264 -0.1559 -0.0706 0.0450 -0.0379 -0,0520

-0.0006 0.0319 0.0505 0.0343 0.0518 0.0265
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For 8P swashplate interface joint loads due to 4P hub actuation,

[Csg/4 ] = 10 3 X

-0.0055 -0.0076 -0.0038 -0.0004 -0.0095

0.0024 -0.0045 0.0042 -0.0038 -0.0035

-0.0007 0.0063 0.0055 0.0031 0.0038

-0.0041 -0.0045 -0.0013 0.0019 -0.0058

-0.0267 -0.0297 -0.0412 -0.0098 -0.0306

-0.0183 -0.0274 -0.0274 -0.0437 -0.0380

0.0733 0.1213 0.0655 0.0108 0.1410

0.0458 0.0513 0.0559 0.0568 0.0305

0.0302 -0.0635 -0.0604 -0.0423 -0.0209

0.0560 0.0829 0.0382 -0.0086 0.1003

0.0077 -0.0102 0.0130 -0.0034 0.0100

-0.0041 -0.0070 -0.0077 -0.0129 -0.0097

-0.0018 -0.0046 -0.0594 0.0860

-0.0062 -0.0057 0.0173 -0.0468

0.0060 0.0092 -0.0061 0.0457

-0.0013 0.0197 -0.0425 -0.0630

0.0216 -0.3239 -0.4213 -0.3923

-0.0147 -0.2268 -0.3427 0.4945

0.0409 0,0316 0.7768 1.2959

0.0851 0.1220 -0.4033 0.3934

-0.0773 -0.0652 0.2957 0.3321

0.0397 0.1789 0.6268 1.1259

0.0075 0.0936 -0.1219 -0.1252

-0.0043 -0.0673 -0.0866 0.1286

For 8P swashplate interface joint loads due to 8P hub actuation,

m

-0.0755 0.0408 -0.1493

-0.0387 0.0865 0.0350

0.0559 -0.0891 -0.0549

-0.0448 0.0827 -0.1365

-0.4334 0,2449 -0.4621

-0.5183 0.1661 0.0989

1.2321 -0.8264 1.9072

0.3921 0.9636 -0.8724

-0.4998 1.0959 1.3223

0.8686 -1.4917 1.8268

0.1384 0.0910 -0.1275

-0.1386 0.0346 0.0595

(5.45g)

[Cssm] = 10 4 x

--0.0083 -0.0013 0.0000 -0.0007 -0.0002 -0.0004 0.0084 0.0167 -0.0263

-0.0029 -0.0005 0.0002 0.0002 -0.0003 -0.0002 -0.0168 0.0060 -0.0016

0,0019 0,0009 0.0000 0.0000 0.0009 0.0004 0.0191 0.0022 0.0102

0.0000 0.0008 0.0000 -0.0006 0.0006 0.0003 -0.0003 0.0193 -0.0211

-0.0247 -0.0032 -0.0020 0.0010 -0.0217 0.0156 0.0067 0.0088 -0.0366

0.1782 -0.0031 -0.0051 -0.0024 -0.0209 -0.0270 0.0019 -0.0067 -0.0622

-0.1261 0.0210 -0.0008 0.0108 0.0028 0.0049 -0.0682 -0.2340 0.3730

0.0516 0.0044 -0.0030 0.0049 0.0052 0.0002 0.2407 -0.0351 -0.0443

0.0106 -0.0082 0.0006 0.0015 -0.0087 0.0038 -0.2735 -0.0817 -0.0699

-0.0047 0.0142 0.0005 0.0077 -0.0035 0.0005 0.0536 -0.2678 0.3212

0.0066 0,0012 -0.0006 0.0002 -0.0063 0,0045 0.0013 0.0030 -0.0140

0.0501 -0.0007 0.0014 -0.0006 -0.0060 0.0077 -0.0004 0.0052 0.0131

-0.0029 -0.0065 0.0989-

0.0230 -0.0039 -0.0477

0.0212 0.0021 -0.0418

0.0067 -0.0029 0.0049

-0.0109 -0.0578 -0.1989

-0.0408 0.0896 2.0997

0.1005 0.0891 -1.5497

0.3184 0.0405 0.7920

-0.2952 -0.0036 0.3968

-0.0260 0.0714 0.0510

-0.0077 -0.0173 -0.0507

-0.0141 -0.0247 0.5904

(5.45h)

As shown, the form of the matrices are not indicative of a linear system. The reader is referred to equation (5.45a),

which presents the impedance matrix component for the 4P hub interface joint response due to 4P actuation. The
submatrix labeled g shows that, unlike the mobility and motion matrices, the diagonal elements of the submatrices

are unequal for the impedance matrix. Similarly, the off-diagonal submatrix terms are not equal and opposite as

for the mobility and motion matrices.

5.3.2.4. System linearity. Because the impedance matrices generated for the BRR are not typical of those for

fully linear systems, immediate concern is raised as to the applicability of the impedance-matching approach to the

rotor system. Therefore, a study has been performed which validates the impedance matrices for translational 4P
hub motions with amplitudes of 0.015 in. and rotational 4P hub motions with amplitudes of 0.10 °. Figure 5.3

shows representative results for 4P axial hub motions ranging from -0.015 to 0.015 in. As shown, the axial hub

load response for the range of motion shown remains linear with respect to the imposed hub motions. This type of

response indicates that the impedance-matching method is applicable for the range of motions expected from this

study.

5.3.3. System Coupling

The final step necessary to couple the BRR system to the ARES-II is the generation and application of the sys-

tem coupling equations. These equations are generated in a manner similar to that used for the sample model (sec-

tion 5.1.4). The motion of the interface joints is most easily defined by observing the system from the point of
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Figure 5.3. BRR model linearity for axial cosine and sine hub motion excitations.

view of ARES-II. Utilizing the mobility equation (eq. (5.35)), the motion equation (eq. (5.39)), and the linear the-
ory of superposition, the motion of the interface joints on the ARES-II may be expressed as

{X t} = [AI{F/} + [B]{U} (5.46)

Load compatibility is enforced at the interface joints by substituting the rotor impedance equation (eq. (5.41)) into

equation (5.46). Displacement compatibility is then enforced by solving for the interface joint displacements {Xt}
as follows:

t= It[I] - [A][C] + [B]{U} (5.47){x/}

The interface joint forces {Ft} are determined by substituting equation (5.47) into equation (5.41) which gives

]'{ t{FI} = {F0} + [C][[I] - [A][C] [AI{Fo} + [B]{U} (5.48)
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5.3.4. System Loads

The development of system loads throughout the ARES-II testbed is of interest. Of particular importance for

this study are the loads generated at each of the system balances. Therefore, a general set of equations has been

developed to define the loads in the ARES-II. The approach taken has been to generate two sets of matrices. The

first set [D] defines the loads transfer from the interface joints to locations throughout the ARES-II, and the second

set [E] defines the effect of actuation on ARES-II component loads.

The load transfer matrices are developed in a manner identical to that used to develop the system mobility

matrices in section 5.3.1.2. The only difference is that a load response due to load excitation is developed instead

of a motion response due to load excitation. The DADS runs used to develop the mobility matrix are used to define

the load response; hence, no additional runs are required to develop the matrix [D]. The matrices defining the

effects of actuation on system loads are developed in a manner identical to the motion matrix development

described in section 5.3.1.3. Again, the DADS runs that have already been made supply all information necessary

to develop the matrix [E]. The loads vector {L} may then be established by using

{L} = [D]{Ft} + [E]{U} (5.49)

6. Presentation of Results

Results from independent, uncoupled analysis of the ARES-II and the BRR models are presented in

sections 6.1 and 6.2; coupled analysis results are presented in section 6.3. Because of the volume of results pre-

sented, tables and figures for section 6 are placed at the end of the section rather than integrated in the text.

6.1. ARES-II Motion Actuation

The actuator motion analysis of section 4.1.2 was used to develop time-varying actuator length schedules for

all ARES-II actuation in DADS. For all results presented, a simulated center of gravity was chosen which was

placed on the rotor shaft centerline and 10.0 in. above the fixed-system balance center. Figure 6.1 presents a repre-
sentative actuator length schedule for 0.01 in. 4P axial sine motion of an inflexible ARES-II model by using the

equations developed in section 4.1.2. However, application of motions to the DADS elastic model of the ARES-II

produces a different response. Table 6.1 presents the response at the hub interface joint using actuator schedules
that command 0.01 in. 4P sine translation and 0.05 ° 4P sine rotation. The columns of table 6.1 represent the 4P

sine motion commanded. The rows represent the cosine and sine components of the hub interface joint response of

the elastic model due to the commanded motion. As shown by the table, the desired motion is either attenuated or

amplified, phase shift is evident, and some significant coupling of pylon motion exists.

When the elastic model of the ARES-II is considered, the Stewart platform must account for the dynamic

response of the system to produce the desired motion. The motion matrix for the hub [BH4 ] from equation (5.36a)

may be used to calculate a control vector that provides a specified hub interface joint motion as follows:

{U} = [BH4I-I{XH4 } (6.1)

Figure 6.2 presents the actuator schedule required to obtain a pure 0.01 in. 4P axial (x direction) translational
motion of the rotor hub interface joint when flexibility is included in the model. A comparison of figure 6.2 with

figure 6.1 indicates the difference in actuator motion required to obtain pure hub motions for the flexible model.
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6.2. BRR Fixed-Hub Loads

A fixed-hub load vector {F0} was obtained with the CAMRAD-II model of the BRR for each forward flight

condition listed in table 5.1. The results for the 4P components of the load are presented in figure 6.3 along with

the total magnitude of the load transmitted to the fixed system by the hub and swashplate interface joint loads. For
this figure, the total magnitude has been calculated with

Ftota I = J(FH_ + FSc)2 + (FH_ + FS )2

= + )2Mtotal J(MH c Msc)2 + (MHs + MSs

This formulation neglects the effect of lateral swashplate loads on the total hub moment; however, these loads are
small for all cases.

The trends observed for total magnitude as a function of flight speed are typical of those encountered with all

rotor systems. Typically, low-speed flight (/.t -- 0.05) vibrations are generally minimal but increase rapidly through

_t -- 0.10 because of a phenomenon called transition in which many blade-vortex interactions occur. Vibratory

loads through the cruising range (_t -- 0.20 to 0.25) are generally low, but loads increase again at the higher flight

speeds (_t > 0.30). Of particular note is the magnitude of the fixed-system swashplate loads at the high speeds
(bt > 0.30) for normal force and pitching and rolling moments. If these loads were neglected as has been common

practice throughout much of the literature, an inaccurate assessment (up to 30 percent error) of the total fixed-

system loads would result. Additionally, for the ARES-II configuration in which the loads sensed by both the
rotating- and fixed-system balances are important; neglecting the swashplate loads would result in a serious defi-
ciency in the balance loads prediction.

6.3. BRR/ARES-II Coupled Results

Because the system coupling method developed in section 5.3.3 requires only simple matrix operations, cou-

pled rotor-testbed solutions for a wide range of ARES-II motions may be obtained in a very short time. Because of

this, a large volume of results have been obtained from this study. Selected results have been chosen for presenta-
tion in this section. Tables 6.2 and 6.3 present representative interface joint motions and loads and allow the com-

parison of the uncoupled rotor loads with the coupled rotor loads. Tables 6.4 and 6.5 present the loads at the f'Lxed-
system and rotating-system balances.

The notation used throughout the tables is straightforward. Displacements are identified as translational (or

linear) motions along an axis (Lx, Lr, Lz) , or as rotational (or angular) motions about an axis (Ax, Ay, Az).

Interface joint locations are identified with either H for the hub or S for the swashplate. Amplitudes are identified

by their frequency (4P or 8P) and the component (cosine or sine). For example, H8S refers to an 8P sine compo-

nent amplitude at the hub interface joint. Forces and moments are presented in units of pounds and inch-pounds.
Displacements are presented in units of inches and degrees.

The rotor-testbed coupled results in tables 6.2 and 6.3 are obtained with equations (5.47) and (5.48). Table 6.2

presents the motion and loads for the three forward flight speeds: bt = 0.10 (transition), I.t = 0.20 (cruise), and

p. = 0.30 (high speed). No pylon actuation was used. Table 6.3 presents the motion and loads for representative
pylon actuation schedules at a low-speed advance ratio _t = 0.10. Results are included for 0.01 in. 4P sine actuation

of the three translational motions (tables 6.3(b) through (d)), and for 0.05 ° 4P sine actuation of the pitch motion

(table 6.3(e)). Also presented are results for 0.01 in. 4P cosine actuation in the axial direction (table 6.3(a)) to dem-
onstrate representative differences in results due to cosine versus sine actuation.

The balance loads results for the coupled system are obtained with equation (5.49). Table 6.4 presents the bal-

ance loads for _t = 0.10 without pylon actuation. Therefore, these results may be compared with those presented in
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table6.2(a).Table6.5presentsthebalanceloadsforthefivepylonactuationschedulesusedtogeneratetheresults
in table6.3.

Thefidelity of thebalancemeasurementsfor normalforceandpitchandroll momentsarepresentedin
figure6.4 for the coupledsystemwithoutactuatedmotion.In this figure,the balancemomentsshownare
correctedfor themomentsproducedby theinterfacejoint lateralforcesandpresentedthroughouttheforward
flight speedrange.Thecorrectionequationsare

MxRB = MxRs + 4.213FHy
COIT

MyRBcolT= MyRB - 4.213FHx

Mx_ B = Mxr B+ 23.538FHy + 15.318Fs_
COlT "

MyFB = MyeB - 23.538FHx - 15.318Fsx
COIT

(6.2)

Table 6.6 presents the results obtained by using the control vector inputs necessary to obtain 0.01 in. 4P axial

sine motion at the hub interface joint for the coupled rotor-testbed. The control inputs were established by using an

iterative solution technique to minimize the phase shift and coupling evident in the results presented in

table 6.3(b). No closed-form method of calculating the proper control inputs as for the stand-alone ARES-II

(section 6.1) is possible. As shown, significant changes in control inputs are necessary to achieve proper hub

motion, particularly for the sine components of the axial and pitch actuation.

Several observations regarding the results obtained for the coupled system are offered as follows:

. Although the loads due to coupling (i.e., the impedance forces and moments) [C] {XI} are generally small for

the unactuated cases (table 6.2), they are significant enough that considering their effects is useful, particu-

larly for the axial and side loads where the loads due to coupling can be as large as or larger than the uncou-

pled loads {F0}. A case could be made for neglecting the loads due to coupling for the normal force and the
moments because their contributions are small for the unactuated results.

. When the pylon is actuated, including the loads due to coupling becomes critical in the analysis. Some of the

load may be attributed to the dynamic load associated with actuating the rotor system. However, a significant

portion of the load is due to the change in the aerodynamic response of the rotor.

. The motion response is greatly affected by the rotor system for the actuated cases. Comparison of the results
of the testbed alone (table 6.1) with the results for the coupled rotor-testbed (table 6.3) indicates that signifi-

cantly different hub motions may be expected when the rotor is coupled to the ARES-II. All motions have

been observed to grow for the coupled system. For the axial motion, the growth is fortuitous because a

response close to that requested by the control vector results. This response is, however, dependent upon the

rotor system and flight parameters selected.

. The motion response is typically amplified compared with the input control vector {U} for the actuated

cases. The exception to this is for side motion in which the motion is attenuated. Some motions can be signif-

icantly larger than expected based on the input control vector. For example, the displacements associated

with pitch actuation (table 6.3(e)) are nearly three times larger than the input. Additionally, the axial response

(Lx) for these conditions exceeds twice the range established for the linear response range of the rotor
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system. To ensure validity of the results, more CAMRAD-II runs would have to be made to determine the

boundaries of the linear range. Furthermore, as indicated in table 6.5(e), the pitching moment at the fixed-

system balance is excessive for the actuated pitch motion. These loads are in excess of the balance limits and

would damage the balance.

5. Because of the observations in paragraph 4 and the phase shift and coupled rotor pylon motions evident

throughout the results, it is apparent that a closed-loop control system must be implemented to account for

the dynamic response of the system and provide the desired motion at the rotor hub. A comparison of

table 6.6, in which the inputs are chosen to provide the desired hub interface joint motion, and table 6.3(b), in

which the desired motions are input for the control vector, illustrates the importance of a closed-loop control

system for proper performance of the ARES-II.

6. The measurement potential of the rotating balance loads is much better than that of the fixed-system balance.

Significant loads due to the dynamic response of the ARES-II are apparent throughout the results of the

fixed-system balance loads. The rotating balance shows minimal effect due to dynamic response. Therefore,

if a reliable means of measuring the swashplate interface loads during wind tunnel testing is identified (e.g.,

strain-gauge pitch links), better system loads may be obtained by using the rotating balance rather than the

fixed-system balance

Table 6.1. Hub Interface Joint Response Due to Actuated 4P Sine Motion

[No rotor model]

Commanded 4P sine motion for--
Type of hub

joint response 0.01 in. 0.01 in. 0.01 in. 0.05 ° 0.05 ° 0.05 °
axial side normal roll pitch yaw

Axial cos
Axial sin
Side cos
Side sin
Normal cos
Normal sin
Roll cos
Roll sin
Pitch cos

Pitch sin
Yaw cos
Yaw sin

-0.0008
0.0069
0.0000
0.0001

-0.0001
0.0000
0.0000

-0.0001
-0.0017

0.0066
0.0000
0.0000

0.0000
0.0000

-0.0006
0.0062
0.0000
0.0000
0.0011

-0.0048
0.0000
0.0000
0.0004

-0.0064

-0.0010
0.0054
0.0000
0.0001

-0.0011
0.0103
0.0000

-0.0001
-0.0026

0.0154
0.0000
0.00_

0.0000
0.0000

-0.0001
-0.0156

0.0000
0.0000
0.0002
0.0545
0.0000
0.0000
0.0001

-0.0020

-0.0008
0.0233
0.0000
0.0001

-0.0006
0.0006
0.0000

-0.0001
-0.0022

0.0766
0.0000
0.00_

0.0000
0.0000

0.0003
0.0019
0.0000
0.00_

--0.0005
0.0024
0.0000
0.0000

-0.0004
0.0666
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Table6.2.CoupledRotor-TestbedResultsfor No Actuated Motion

(a) _t = 0.10

Component LX Ly L z A x A y A z

Input control vector {U}

4C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4S 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Hub and swashplate interface displacements {Xt}

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-0.000172
0.000866

-0.000082

0.000296
0.000000
0.000002

0.000001
0.000009

-0.000594

-0.000251

-0.000140

-0.000080

0.000055

-0.000187

0.000021

-0.000154

0.000003
0.000092

-0.000004

0.000089

0.000029
-0.000064

0.000030
-0.000065

0.004305
0.001885
0.001663

0.000391
-0.000380

0.000186

-0.000060
0.000294

-0.000708

0.005145
-0.000437

0.002483
-0.000032

-0.000077

0.000035
-0.000023

-0.003719

0.001361
-0.000990

0.000365
0.00(1074

-0.001580

0.000556
-0.001419

Component FX Fy [ FZ MX Mr

Hub and swashplate interface forces and moments {Ft}

Mz

H4C
H4S

$4C

$4S

H8C

H8S

$8C

$8S

-1.65
14.20
0.42

-0.07

-0.26

0.75
--0.04

0.04

-15.74
0.76

-0.11

-0.04

1.98
0.07

-0.01
0.00

Hub and swashplate forces and

19.28
8.36

-0.15

7.16

-2.58

5.01
0.17

-0.95

62.01

71.31

--6.38

1.34

-7.05

-5.13

0.56

-0.61

-2.34

67.46

0.52
0.26

-2.27

-5.59
0.24

-0.03

-132.93
52.75

-0.02

2.02

-24.14
-6.57

0.05

-0.27

moments for fixed-hub condition {Fo}

H4C

H4S

$4C
$4S

H8C

H8S

$8C
$8S

-0.22

7.22
0.43

-0.07

-0.34

0.90

0.00

0.03

-11.11
2.89

-0.10

-0.04

-0.31

0.09
-0.04

0.02

19.25
7.52

--0.33

7.32

-2.58

6.06

0.23
-0.31

58.31

70.28
-6.53

1.31

---4.98

-2.23
-0.12

-0.46

-3.71

64.34

0.43
0.33

-7.73

-2.84
0.44

-0.25

- 122.66
57.23
-0.07

2.06

-20.14

10.06

0.07
-0.09

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

Impedance forces and moments [C] {X t}

-1.42
6.98

-0.01

0.00
0.08

-0.15

-0.04

0.01

-4.64

-2.13

0.00
0.01

2.29

-0.02

0.02

-0.01

0.03
0.84

0.18
-0.15

0.00

-1.06
-0.06

-0.64

3.70

1.03

0.15

0.03

-2.07

-2.90

0.68

-0.15

1.37

3.12
0.09

-0.07

5.46

-2.75

-0.19

0.22

-10.27
-4.49

0.05

-0.04

-4.00

-16.63
-0.02

-0.18
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Table 6.2. Continued

(b) tx = 0.20

Component L x L r L z A x A r A z

Input conlxol vector {U }

4(2 0.000000 0.000000 0.0000 0.000000 0.000000 0.000000

4S 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000

Hub and swashplate interface displacements {XI}

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-0.000096

0.000632

-0.00(09

0.000214
-0.000017

-0.000010
-0.000013

0.000006

-0.000353
-0.000059

-0.000075

-0.000019

0.000039

0.000135

0.000031

0.000053

0.000011

0.000035

0.000009

0.000035

0.000111

0.000074

0.000114

0.000076

0.002647

0.000465

0.001005

0.000055

-0.000072

-0.000867

-0.000061

-0.000174

-0.000420

0.003761

-0.000179

0.001814

-0.000082

-0.000263

0.000037

0.000076

-0.000670

0.002128

-0.000218

0.000529

0.000468

0.000386

0.000494

0.001194

Component Fx Fy I Mx My Mz

Hub and swashplate interface forces and moments {FI}

H4C
H4S

$4C

$4S

H8C

H8S

$8C

$8S

0.05

10.70
0.23

-0.26

-1.27

-1.13

-0.01

-0.01

-9.02

1.73

-0.16

0.05
1.25

4.59

-0.06

-0.04

6.78

-0.95

3.76

2.63

-8.23

-6.42

1.33

0.63

41.07

24.78

-3.75
3.76
3.12

-13.28
0.05

-0.07

-9.08

48.09

1.18

-0.23

-1.21
-11.21

0.54

0.40

-20.08

79.31

1.08

0.74

-3.52
-39.74

0.39

0.19

Hub and swashplate forces and moments for fixed-hub condition {Fo}
H4C
H4S

$4C

$4S

H8C
H8S

$8C

$8S

0.89

5.60

0.24

-0.26

-0.80

-0.79

-0.01

-0.01

-6.29

2.24
-0.16

0.05

0.06
-0.19

-0.06

-0.03

6.66

-1.34
3.78

2.75

-11.49
-9.36

1.33
0.69

Impedance forces and moments

39.81

24.43

-3.81

3.80

3.27

-9.98

-0.01

-0.02

[c] {x_}

-8.27 -17.03
45.76 79.99

1.21 1.09

-0.22 0.78
-0.81 -4.95

-10.16 -47.82

0.46 0.39

0.35 0.20

H4C

H4S
$4C

$4S

H8C
H8S
$8C

$8S

-0.84

5.10

0.00

0.00

-0.47
-0.34

-0.01

0.00

-2.74

-0.51

0.00

0.00

1.20

4.78

0.00
0.00

0.12

0.38

-0.01

-0.12

3.26

2.94

0.00

-0.05

1.26

0.35

0.06
-0.04

-0.15
-3.30

0.07

-0.05

-0.81

2.33

-0.02

-0.01

-0.41

-1.05
0.08

0.06

-3.05

-0.69

0.00

-0.04

1.43

8.08
0.00

-0.01
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Table 6.2. Concluded

(c) _t = 0.30

Component Ly Lz Ax

Input control vector {U }

4C 0.000000 0.000000 0.0(R)000 0.0000_ 0.(RKKK_ 0.000000

4S 0._ 0.000000 0.0(R)(K_ 0.000000 0.000000 0._

Hub and swashplate interface displacements {XI}

Lx

-0.000408

0.000212
-0.00(04

0.000033
0.000007
0.000201
0.000017
0.000102

-0.000248

0.000589

-0.000108

0.000200

-0.000035

-0.000010

-0.000011

0.000010

-0.000002

0.000055

-0.000004

0.000052

0.000100

0.000096

0.000102

0.000098

0.003031
-0.001620

0.001078

-0.000729

0.000078

-0.000956
-0.000008

-0.000291

A¥

-0.001280

0.003460

-0.000562

0.001724

-0.000354

-0.000325

0.000023

0.000092

H4C

H4S
$4C

$4S

H8C
H8S

$8C
$8S

-0.000712

0.002437

-0.000214

0.000657

0.000455

0.000903

0.000153
0.001979

Component Fx F r Fz Mx M,, I
Hub and swashplate interface forces and moments {Ft}

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-1.85

11.00

0.97

-0.93

-0.49

-1.99

-0.43

0.01

-9.50

9.27
0.30

0.02

-0.16
7.23

0.03
-0.30

3.91
8.30

7.95

0.39

--4.59

-8.11

-1.33

0.87

52.23

-6.10

-14.08

13.41

1.76

--0.69

6.42

--0.79

-24.10
37.29

-8.16

1.57

-17.05

-10.63

1.29

3.92

-22.05

88.27

2.16

0.13

11.94

-53.83

--0.29

0.36

Hub and swashplate forces and moments for fixed-hub condition {Fo }

H4C
H4S

$4C
$4S

H8C

H8S

$8C

$8S

0.49

6.33

0.98

-0.93

0.67

-1.67

-0.45

0.00

-6.19

1.76

0.31

0.01

-0.18

0.26

0.03

-0.31

4.04

7.73

8.02
0.53

-7.08

-11.60
-1.48

0.86

55.23
-3.88

-14.16

13.29

1.14

3.25

6.79

-0.78

-24.67

40.23

-8.28
1.58

-16.33

-9.54

1.35

4.10

-15.62

104.27
2.18

0.17

15.64

-66.27

-0.33

0.36

Impedance forces and moments [C] {Xt}

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-2.34

4.68

-0.01
-0.01

-1.16

-0.33

0.02

0.00

-3.31

7.50
-0.01

0.00

0.02

6.97

0.00

0.01

-0.14

0.57

-0.07

-0.14

2.49

3.49

0.14

0.01

-3.01

-2.22

0.08
0.11

0.61

-3.94

-0.37

-0.01

0.57

-2.95

0.12

-0.01

-0.72

-1.09

-0.07

-0.19

-6.43

-16.00

-0.02

-0.04
-3.70

12.44

0.04

0.00
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Table 6.3. Coupled Rotor-Testbed Results for Actuated Motion

(a) 0.01 in. 4P axial cosine actuation; l.t = 0.10

Component

4C

4S

H4C

H4S

$4C
$4S
H8C

H8S

$8C
$8S

0.010000
0.000000

0.010146

0.002971
0.006981

0.001412

0.000017
0.000008

-0.000016
0.000029

Ly Lz Ax

Input control vector {U}

O.O0(Og_ 0.0000_ 0._

0.000000 0.0000(0 0.0000(_

Hub and swashplate interface dis _lacements {Xl}
-0.000448

-0.000358

-0.000032
-0.000090

0.000137

-0.000531
0.000060

-0.000420

0.000095
0.000265

0.000086

0.000261

0.000024
-0.000148

0.000025
-0.000152

0.004010

0.002768
0.001466
0.000777

-0.000819

0.000745

-0.000155

0.000822

Ay

0.025044
0.012598
0.017423
0.007917
0.000401

-0.000271

0.000043

-0.000043

Az

0.0000000.000000

-0.004780
0.001454

-0.001232

0.000356
0.000242

-0.004271

0.001358
-0.003970

Component Fx Fy [ Fz M x My Mz

Hub and swashplate interface forces and moments {Ft}

H4C
H4S

$4C
$4S
H8C

HSS
$8C
$8S

83.11

33.20

0.32

-0.10

1.04

1.30

-0.21

0.05

-14.72
-3.26

-0.09
0.03

4.24

-0.27

0.04

-0.08

22.92

9.81

-0.02

7.55
-2.35

11.83
-0.35

-2.43

62.23 8.06

78.27 71.01

-4.80 0.50

1.94 -0.72

-13.54 12.23
--6.11 -17.48

3.05 0.00

-1.10 1.35

Hub and swashplate forces and moments for fixed-hub condition{Fo}

-173.05
58.84

0.01

2.12
-55.77

-11.61
-0.11

-0.66

H4C

H4S

$4C
$4S

H8C
H8S

$8C

$8S

-0.22

7.22

0.43

-0.07

--0.34
0.90

0.00

0.03

-11.11
2.89

-0.10

-0.04

-0.31

0.09

-0.04

0.02

19.25

7.52
-0.33

7.32

-2.58

6.06

0.23

-0.31

58.31

70.28

-6.53

1.31

-4.98
-2.23
-0.12

-0.46

-3.71
64.34

0.43

0.33

-7.73

-2.84
0.44

-0.25

- 122.66

57.23

-0.07

2.06

-20.14
10.06
0.07

-0.09

Impedance forces and moments [C] {X/}

H4C
H4S
$4C
$4S

H8C
H8S
$8C

$8S

83.34
25.98
-0.12

-0.03

1.38

0.40

-0.21

0.02

-3.61

-6.16

0.02

0.08

4.55
-0.36

0.08

-0.10

3.67

2.28

0.31

0.24

0.24

5.76

-0.58
-2.12

3.92

7.99

1.74

0.63

-8.56
-3.88

3.16

-0.64

11.77

6.67
0.07

-1.05

19.96
-14.64

-0.44

1.60

-50.39

1.61
0.08

0.06

-35.63

-21.67
-0.19

-0.58
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Table 6.3. Continued

(b) 0.01 in. 4P axial sine actuation; IX= 0.10

Component

4C

4S

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

Lr Lz Ax

Input control vector {U}

0.000000 0.000000 I 0.000000

0000000 0._000 I 0.000000

Hub and swashplate interface displacements {X/}

-0.000559 -0.000160 0.003915

-0.000041 0.000184 0.001161

-0.000151 -0.000167 0.001450

0.000047 0.000180 0.000029

0.000095 0.000030 -0.000605

-0.000370 -0.000109 0.000477

0.000040 0.000031 -0.000104

-0.000295 -0.000112 0.000576

0.000000
0.010000

-0.002280

0.011221
-0.001201

0.007370
0.000007

0.000007

-0.000008

0.000019

Ay

0.000000

0.000000

-0.008200

0.031117
-0.005849

0.020460
0.000174

-0.000149

0.000040

-0.000034

Az

0._
0.000000

-0.004179

0.001325

-0.001072
0.000376

0.000145

-0.003004

0.000936
-0.002776

Component Fx Fy Fz Mx My Mz

Hub and swashplate interface forces and moments {FI}

H4C -20.11

H4S 99.70

$4C 0.38

$4S -0.07

H8C 0.42

H8S 1.13

$8C -0.15

$8S -0.01

-13.06

3.34

-0.05

0.08
2.93

-0.10

0.08
-0.04

20.16

9.58

-0.35

7.69
-2.60

8.80

-0.18

-1.86

64.38

65.10

-5.60
1.67

-11.48
-5.97

2.39

-0.03

Hub and swashplate forces and moments for fixed-hub

-10.89

79.69

-0.11

-1.48
4.37

-10.72

-0.78

0.92

condition {F0}

-151.60

50.92

-0.08

2.16

-39.57
-8.98

-0.07

-0.52

H4C --0.22

H4S 7.22

$4C 0.43

$4S -0.07
H8C -0.34

H8S 0.90

$8C 0.00

$8S 0.03

-11.11
2.89

-0.10

-0.04

-0.31

0.09

-0.04

0.02

19.25

7.52

-0.33

7.32
-2.58

6.06
0.23

-0.31

58.31

70.28

--6.53

1.31

--4.98

-2.23
--0.12

--0.46

Impedance forces and moments [C] {Xl}

-3.71
64.34

0.43
0.33

-7.73
-2.84

0.44
-0.25

- 122.66

57.23

-0.07

2.06

-20.14
10.06

0.07

-0.09

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-19.89
92.48

-0.05

0.00

0.76

0.24

-0.15

-0.05

-1.95

0.44

0.05
0.12

3.24

-0.19

0.12

-0.06

0.91

2.06

-0.02

0.38

-0.02

2.74

-0.42

-1.55

6.08

-5.18

0.94
0.36

-6.50
-3.74

2.51

0.43

-7.18
15.36

-0.55

-1.80

12.09
-7.88
-1.22

1.16

-28.94
-6.31

-0.01

0.10
-19.43
-19.04

-0.15

-0.43
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Table 6.3. Continued

(c) 0.01 in. 4P side sine actuation; Ix = 0.10

Component

4C

4S

H4C

H4S
$4C

$4S

H8C

H8S

$8C

$8S

0.0000_
0.000(_

-0.000297
0.000810

-0.000121

0.000277
-0.000002

0.O00002
0.000001
0.000005

Ly L z A x

Input conlrol vector {U }

0.000000 0.000000 0.000000

0.010000 0.000000 0.000000

Hub and swashplate interface dis )lacements {Xl}

-0.001664

0.007533

-0.000739

0.005673

0.000067

-0.000127

0.000028
-0.000105

-0.000001

0.000090

-0.000008

0.000087
0.000040

-0.000060

0.000041

-0.000062

0.007887

-0.014586
0.004077

-0.010071

-0.000419

0.000113
-0.000081

0.000202

A¥

0._

0.000000

--0.001438

0.004835

-0.000847

0.002302

-0.000059

-0.000037

0.000040

-0.000024

Az

0._

0.000000

-0.003178

-0.004463

-0.000581

-0.005397

0.000160
-0.001114

0.000624

-0.001018

Component FX Fy FZ MX My

Hub and swashplate interface forces and moments {F/}

Mz

H4C

H4S

$4C
$4S

H8C

HSS

$8C

$8S

-4.57
13.27

0.39
-0.13

-0.53

0.96
0.00

0.00

-25.56
65.13
-0.14

-0.02

2.12

-0.29

0.01
0.05

19.35

8.84

-0.38

7.85

-3.42
4.81

0.29
-1.01

67.41
63.14
-5.94

2.22

-7.25
-5.37

0.00
0.04

-5.37
65.69

1.13

0.03
-2.56

-4.44

-0.19

-0.55

-126.51
49.54

-0.08

2.21

-23.13

-3.41

0.08

-0.29

Hub and swashplate forces and moments for fixed-hub condition {F0}
H4C

H4S

$4C

$4S
H8C

H8S

$8C

$8S

-0.22

7.22

0.43
-0.07

-0.34

0.90

0.00

0.03

-11.11 19.25
2.89 7.52

-0.10 -0.33
-0.04 7.32

-0.31 -2.58

0.09 6.06
-0.04 0.23

0.02 -0.31

Impedance forces and moments [C]

58.31

70.28

-6.53

1.31
-4.98

-2.23

--0.12

-0.46

-3.71
64.34

0.43

0.33
-7.73

-2.84
0.44

-0.25

- 122.66

57.23

-0.07

2.06
-20.14

10.06

0.07
-0.09

{X/}

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

--4.35

6.05

-0.05
-0.06

-0.19

0.07

0.00

-0.03

-14.45
62.24

-0.04

0.03

2.43
-0.39

0.04

0.03

0.10

1.32

-0.05

0.54

-0.84

-1.25

0.05

-0.70

9.10

-7.15

0.59
0.91

-2.27

-3.14

0.11

0.49

-1.66
1.35
0.69

-0.30

5.17

-1.60
-0.63

-0.30

-3.84
-7.70

-0.01

0.15

-2.99
-13.48

0.01
--0.21
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Table 6.3. Continued

(d) 0.01 in. 4P normal sine actuation; p. = 0.10

Component

4C

4S

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

Ly Lz Ax

Input control vector {U }

0.000000 0.000000 0.000(K_

0.000000 0.010000 0.000000

Hub and swashplate interface displacements {Xl}

0.000000

0.000000

-0.002530

0.008906

-0.001268

0.004307

0.000014
0.000004

-0.000013

0.000023

-0.000574

-0.000037

-0.000153

0.000049

0.000089

-0.000486

0.000036

-0.000389

-0.001324

0.010624

-0.001325

0.010590

0.000020

-0.000116
0.000021

-0.000119

0.004019

0.001136

0.001511

0.000021

-0.000590

0.000605

-0.000089

0.000757

Ay

0.000000

0.000000

-0.009618

0.035705

-0.007031

0.026734

0.000335

-0.000247
0.000034

-0.000033

Az

0.000000

0.000000

-0.004126

0.001467

-0.001065

0.000408

0.000058

-0.003919

0.000929
-0.003599

Component Fx F_ Fz Mx My Mz

Hub and swashplate interface forces and moments {F/}

H4C -22.07
H4S 80.54

$4C 0.35

$4S 0.02
H8C 0.85

H8S 1.12

$8C -0.16

$8S -0.06

Hub

-13.76

3.38

-0.01

0.11

2.82
0.22

0.14
-0.04

8.89

86.05

-0.59

6.99

-1.89
9.63

-0.29

-2.25

63.41

64.39

-5.08

0.40

-12.15

-7.86

2.65

0.61

-15.92

83.18

-0.69

-2.07

10.31
-15.89

-1.52

1.04

-149.19

56.28

-0.15

1.96
-43.74

-13.26

-0.12
-0.63

and swashplate forces and moments for fixed-hub condition {Fo }

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-0.22

7.22

0.43

-0.07
-0.34

0.90
0.00

0.03

-11.11

2.89

-0.10

-0.04

-0.31

0.09
-0.04

0.02

19.25

7.52

-0.33

7.32
-2.58

6.06

0.23

-0.31

58.31

70.28
-6.53

1.31

-4.98

-2.23

-0.12

-0.46

Impedance forces and moments {C] {Xl}

-3.71 - 122.66

64.34 57.23

0.43 -0.07

0.33 2.06

-7.73 -20.14

-2.84 10.06

0.44 0.07

-0.25 -0.09

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-21.84

73.32

-0.08

0.09

1.19

0.23

-0.16

-0.09

-2.66

0.48
0.09

0.15

3.13

0.13

0.17

-0.05

-10.36
78.52

-0.26

-0.33

0.70

3.56

-0.53

-1.94

5.10

-5.89

1.46

-0.91

-7.17

-5.63

2.77

1.07

-12.21

18.85

-1.12

-2.39

18.03

-13.04

-1.95

1.28

-26.53
-0.95

-0.08

-0.10

-23.60

-23.32

-0.19

-0.54
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Table 6.3. Concluded

(e) 0.05 ° 4P pitch sine actuation; Ix = 0.10

Component LX Ay AzLy L z ] A x

Input control vector {U}

0.000000 0.000000 0.0000(_

0.000000 0.000000 0.000000

Hub and swashplate interface displacements [Xl}

-0.000414 -0.000951 0.002686
0.000062 0.000951 0.000475

-0.000150 -0.000958 0.000812

0.000076 0.000941 -0.000235

0.000272 0.000035 -0.001572

-0.001179 -0.000306 0.001741

0.000124 0.000036 -0.000303

-0.000924 -0.000315 0.001822

4C 0.000000 0.000000 0.000000

4S 0.000000 0.050000 0.0(KI(K_

-0.004462

0.036147
-0.002167

0.016474

0.000043
0.000025

-0.000045

0.000061

-0.017315

0.149276
-0.012095

0.118428

0.001102

-0.000468

0.000065

-0.000082

H4C

H4S

$4C

$4S
H8C

H8S
$8C

$8S

-0.006197

0.001169
---0.001479

0.000350

0.000468

-0.009324

0.002660

-0.008778

Component

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

FX

--40.69

306.05
0.08

0.11

3.16
2.73

-0.57

-0.16

Fr Fz Mx Mr Mz

Hub and swashplate interface forces and moments (Ft)

-5.94

4.78
0.26
0.45
7.48

-0.86

0.40

-0.22

21.87

17.19

-0.76

9.52

-2.83

25.11

-1.53

-5.69

65.56

51.84

-0.43

-0.02

-28.32

-10.89

9.12

1.30

-32.03
150.92

-3.79

-7.55

35.42

-33.12

-3.93

4.34

Hub and swashplate forces and moments for fixed-hub condition {F0}

-231.03

46.72

0.23

2.66

-109.40

-20.56

-0.54

-1.56

H4C

H4S
$4C

$4S

H8C

H8S

$8C

$8S

-0.22

7.22
0.43

-0.07

-0.34

0.90

0.00

0.03

-I1.11
2.89

-0.10

--0.04

-0.31

0.09

-0.04

0.02

19.25 58.31

7.52 70.28

-0.33 -6.53
7.32 1.31

-2.58 -4.98

6.06 -2.23

0.23 -0.12

-0.31 -0.46

-3.71

64.34

0.43
0.33

-7.73

-2.84

0.44

-0.25

- 122.66

57.23

-0.07

2.06

-20.14

10.06

0.07

-0.09

Impedance forces and moments [el {Xl}

H4C

H4S
$4C

$4S

H8C
H8S

$8C

$8S

--40.47

298.83

-0.35

0.18

3.51

1.84

-0.57

-0.19

5.17

1.88

0.36
0.50

7.79

-0.95

0.44

-0.23

2.62

9.66

-0.43

2.21

-0.25
19.04

-1.77

-5.38

7.26

-18.45

6.10

-1.33

-23.34

-8.66

9.24

1.76

-28.32

86.59
-4.22

-7.87

43.14

-30.27

-4.37

4.59

- 108.37

-10.52

-0.16

0.60

-89.26
-30.63

-0.61

-1.48
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Table 6.4. Coupled Rotor-Testbed Results for Balance Loads With No Actuation and tx = 0.10

Component Lx Ly ] L z Ax A¥

Input control vector {U }

Az

4C 0._ 0.000000 0.000000 0.000000 0.000000 0.000000

4S 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Fixed-system balance forces and moments

4C

4S

8C

8S

Fx
-2.51

13.60

-1.19

3.01

Fy

-10.75

-1.94

-4.45

4.46

ez
17.18

29.26

3.10

-7.26

Mx

431.29

78.72

-26.03

9.16

My

-76.44

604.52

22.29

-39.08

Mz
-207.41

81.62

99.79

-259.68

Rotating-system balance forces and moments

4C

4S

8C

8S

-1.76

14.74

-0.26

0.76

-16.13

0.68

1.82

-0.37

19.28

8.43

-2.50

4.83

129.29

68.44

-15.72

-4.34

-9.53

128.59

-3.39

-2.41

-132.95

52.77

-24.14

--6.63
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Table 6.5. Coupled Rotor-Testbed Results for Balance Loads With Actuated Motion

(a) 0.01 in. 4P axial cosine actuation; I.t = 0.10

Component ] Lx I ", [ I A" I ] Az

Input control vector {U }

4S 0._ 0.000000 0.00(KI_ 0._ 0.0000iX) 0.000000

Fixed-system balance forces and moments

Fx Fr Fz Mx Mr Mz

4C 281.67 -9.12 96.53 403.60 4573.81 -259.71

4S 50.26 -5.05 60.29 182.04 1616.29 81.09

8C -2.73 -10.12 2.25 -53.92 46.87 240.02

8S 7.49 13.13 -16.67 38.19 -95.22 -727.70

Rotating-system balance forces and moments

4C L 89.98

4S 35.14

8C 1.05

8S 1.35

-15.33

-3.36

3.95

-1.49

22.98

9.99

2.25

-16.67

125.14

92.55

-32.23

-1.91

373.36

215.35

16.67

-11.94

-173.08

58.87

-55.76

-11.77

(b) 0.01 in. 4P axial sine actuation; _t = 0.10

Component L x L r L z A x

Input control vector {U}

Ay A Z

4C 0.000000

4S 0.010000

0._ 0.000000 0._

0.000000 0._ 0._

Fixed-system balance forces and moments

0._ 0._

0._ 0._

Fx
4C -38.90
4S 298.53

8C -2.06

8S 5.30

Fr
-8.60

0.41

-7.14

9.19

Fz
-10.85

107.09

3.06

-12.38

Mx

370.35

6.98

-38.51

24.94

Mr
-1080.83

5282.36

36.22

-67.96

Mz
-225.16

83.55

165.62

-508.44

Rotating-system balance forces and moments

4(2 -21.64 - 13.47 20.05 120.26 -99.05 - 151.62

4S 107.24 3.08 9.70 51.20 516.49 50.94

8C 0.42 2.72 -2.52 -24.41 6.16 -39.57

8S 1.17 -0.96 8.49 -3.41 -5.88 -9. l0
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Table 6.5. Continued

(c) 0.01 in. 4P side sine actuation; I1 = 0.10

Component I Lx Ly Lz A x Ar Az

Input control vector {U }

4C 0.00(0)O 0.000000 0.000000 0.000000 0.000000 0.000000

4S 0.000000 0.010000 0.000000 0.000000 0.000000 0.000000

Fixed-system balance forces and moments

FX Fr FZ MX Mr MZ

4C

4S

8C

8S

-5.07

12.46

-1.55

2.65

-34.87

271.96

-4.71

3.44

15.21

29.62

4.43

--6.91

803.95 - 176.86

-2967.45 564.00

-30.34 26.98

8.63 -34.14

Rotating-system balance forces and moments

-118.20

-1237.03

!14.29

-187.94

4C

4S

8C

8S

-4.77

13.76

-0.53

0.97

-28.03

69.94

2.01

-0.53

19.35

8.90

-3.31

4.64

177.35

-122.60

-16.58

-3.39

-25.09

122.77

-4.80

-0.36

-126.51

49.46

-23.12

-3.46

Component L x

(d) 0.01 in. 4P normal sine actuation; _t = 0.10

Ly I Lz Ax

Input control vector {U }

Ay AZ

4C 0.000000

4S 0.000000

0.000000 0.000000 0.900000 0.000000 0.000000

0.000000 0.100000 0.000000 0.000900 0.000000

Fixed-system balance forces and moments

4C

4S

8C

8S

4C

4S

8C

8S

Fx Fr Fz Mx Mr. Mz

-36.06

104.74

-2.17

5.96

-23.74

86.21

0.86

1.17

-9.15

0.38

-7.33

11.59

-76.10

643.67

1.88

-13.09

386.21

4.13

-35.06

29.54

Rotating-system balance forces and moments

-14.12 7.95 122.30

3.90 93.52 50.41

2.56 -1.83 -24.58

-1.00 9.30 -5.99

-1454.16

6517.03

37.39

-75.54

-112.69

435.56

13.95

-11.10

-223.49

90.51

160.87

--657.14

-149.21

56.30

-43.74

-13.41
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Table 6.5. Concluded

(e) 0.05 ° 4P pitch sine actuation; _ = 0.10

ComponentI Lx I /'" I "z I Ax I A, I Az
Input control vector (U}

o lo lo lo 4S 0.000000 0.O(0)(K_ 0.000000 0.000000 0.050000 0.000000

Fixed-system balance forces and moments

_x Fr Fz Mx Mr Mz
4C -69.47 -2.04 -68.55 199.58 -2308.30 -313.26

4S 294.59 2.46 538.40 -53.98 16243.61 78.74

8C -5.86 -19.37 2.74 -95.82 96.75 464.69

8S 15.30 29.99 -34.56 92.89 - 193.90 -1608.42

Rotating-system balance forces and moments

4C

4S

8C

8S

--43.73

328.86

3.18

2.86

-5.91

4.79

6.99

-3.61

21.20

17.85

-2.73

24.25

91.26

31.73

-61.48

-0.45

-210.40

1492.91

48.93

-21.39

-231.08

46.72

-109.39

-20.92
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Table 6.6. Coupled Rotor-Testbed Results for Actuated Motion Corrected for

Proper Motion at Hub Interface Joint

[0.01 in. 4P axial sine actuation; Ix = 0.10]

Component L x

4C 0.001434

4S 0.025596

H 4C --0.000014

H4S 0.009910

S4C --0.00(08

$4S 0.010421

H8C 0.000002

H8S 0.000004

S8C -0.000005

$8S 0.000013

Ly L z Ax I

Input control vector {U }

-0.001213 -0.000122 -0.003473

-0.000581 0.000042 -0.001358

Hub and swashplate interface displacements {X1}

0.000008 0.000001 0.000008

0.000006 -0.000001 0.000006

-0.000123 -0.000007 -0.002067

-0.000076 -0.000004 -0.001159

0.000077 0.000030 -0.000499

-0.000262 -0.000084 0.000322

0.000031 0.000031 -0.000085

-0.000211 -0.000087 0.000409

Ay

0.002847

-0.025542

-0.000001

0.000097

0.000455

-0.009225

0.000071

-0.000120

0.000036

-0.000027

AZ

0.002258

-0.001503

0.000005

0.000004

0.002937
-0.001084

0.000128

-0.002159

0.000742

-0.001977

Component FX Fy FZ MX My M z

Hub and swashplate interface forces and moments {FI}

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-1.35

89.32

0.46

-0.16

0.16

0.94

-0.11

0.01

-9.03

3.30

-0.13

0.03

2.39

-0.03

0.04

-0.03

20.93

7.73

-0.51

7.64

-2.61

6.70

-0.01

-1.35

63.41

67.01

-6.99

2.82

-9.68

-4.71

1.64

-0.26

-3.83 -142.85

57.86 57.54

0.81 -0.12

-0.53 2.14

0.76 -30.76

-8.58 -7.22

-0.33 -0.02

0.52 -0.38

Hub and swashplate forces and moments for fixed-hub condition {F0}

H4C -0.22

H4S 7.22

$4C 0.43

$4S -0.07

H8C -0.34

H8S 0.90

$8C 0.00

$8S 0.03

-11.11

2.89

-0.10

-0.04

-0.31

0.09

-0.04

0.02

19.25

7.52

-0.33

7.32

-2.58

6.06

0.23

-0.31

58.31

70.28

-6.53

1.31

-4.98

-2.23

-0.12

-0.46

-3.71

64.34

0.43

0.33

-7.73

-2.84

0.44

-0.25

Impedance forces and moments [C] {X 1 }

-122.66

57.23

-0.07

2.06

-20.14

10.06

0.07

-0.09

H4C

H4S

$4C

$4S

H8C

H8S

$8C

$8S

-1.13

82.10

0.02

-0.09

0.50

0.05

-0.11

-0.03

2.08

0.40

-0.03

0.07

2.70

-0.12

0.08

-0.04

1.68

0.20

-0.18

0.32
-0.03

0.64

-0.25

-1.04

5.10

-3.27

-0.45

1.51

-4.71

-2.48

1.75

0.20

-0.12

-6.48

0.38

-0.86

8.49

-5.74

-0.77

0.77

-20.19
0.31

-0.05

0.08

-10.62

-17.28

-0.09

-0.29
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Figure 6.1. Actuator lengths for 0.01 in. 4P sine actuation of inflexible ARES-II.

64



7.94

7.93

_ 7.92

_ 7.91
2

<

7.90

7.89........ i;4......... .08.....0 .02 .06 .10

Time, s

7.86

7.85

"_ 7.84

N 7.83

7.82

7.81 .............. .--06..........0 .02 .04 .08 .10

Time, s

7.77

7.76

_7.75

_ 7.74

7.73

_v v_v _

.02

.01

0

-.01

-.02

.02

.01

0

-.01

-.02

.02

.01

-.01

-.02

772 .... 02............. 108.....0 .04 .06 .10

Time, s

-d

O

E
Q

O

"E

O

2

<

-d
.=,
E
O

E

e_

<

.=A
-d
.=,
E

E
O

8

<

7.94

7.93

._2

_7.92

_ 7.91
2

<

VI/V 
7.90

7.89 ................... .'-08 ....0 .02 .04 .06 .10

Time, s

7.86

7.85

_7.84

o

_ 7.83
2

<

7.82

7.76

._2

_7.75
e_

y_

_ 7.74
2

7.81 .... ''' ...... ' ......... '
0 .02 .04 .06 .08 .10

Time, s

.02

E

e_

.01 E
O

o_

-.01

-.02

<

.02 -_

.01
0

o_

-.01

-.02 ,_
<

7.77 .02 "d

.01

_ v v v

-.01 :_

7.73 -.02 _

<

..-'_.'_9 .............. , ..........
0 .02 .04 .06 .08 .10

Time, s

Figure 6.2. Actuator lengths for 0.01 in. 4P sine actuation of elastic ARES-II.

65



_o

g_

20

10

_.i °'"

0 _ ...... - ,
....... | ....... • Jill milil •

-10 ....................
0 .1 .2 .3 .4

Advance ratio, g

-- Hub cosine
........ Hub sine

Swashplate cosine
.... hpl.... Swas ate sine

Total mag

f 120100

#
.= 80

= 60
E
O
N 40

._ 2o
o

-20

-40
0

....... lleeem_- • I"

.... i .... i .... I .... i

•1 .2 .3 .4

Advance ratio, g

o"

20

-10

-20 ....................
0 .l .2 .3 .4

Advance ratio, la

150

._ 100

_J

E 50

•_, 0

-50
0

°'

.... , .... t .... i . . . i I

•1 .2 .3 .4

Advance ratio, It

30

20

10

o
O

-10

-20 .............. , .....
0 .1 .2 .3 .4

Advance ratio, p.

•l .2 .3 .4

Advance ratio, _t

Figure 6.3. Fixed-system loads for uncoupled BRR model.

66



20

az

15

10
0

c-

O

u 5
t_

80

G

60

O

40
c-

o

= 20

8
t_
"¢t

Hub

......... Hub + swashplate
• Fixed-system balance
• Rotating balance

30

,/

0

.... i .... i .... , .... i

•1 .2 .3 .4

Advance ratio

.... i .... i .... a .... I

•1 .2 .3 .4

Advance ratio

20 •

10 " • •

o
-10 ....................

0 .1 .2 .3 .4

Advance ratio

100

so

60
o

E
O

E 40

e_

2o
e_

t_

-20
0

.... i .... i .... , .... i

•1 .2 .3 .4

Advance ratio

100

50

0
O

E

-50 •
e-,

"7,-100 •
8 •

-150 ....................
0 .1 .2 .3 .4

Advance ratio

300

250

200

E
O

E 150

._ ]oo
e_

e.

"_ 50
a.

• •

.... n .... I , - - . i .... n

.1 .2 .3 .4

Advance ratio

Figure 6.4• Balance loads compared with hub interface joint loads.

67



7. Conclusions

A method for coupling an aeroelastically scaled model rotor system to the ARES-II (second generation ver-

sion of the Aeroelastic Rotor Experimental System) rotor research testbed has been developed. The method

requires the development of individual analytical models of the ARES-II and the rotor system to be coupled. For
this study the Basic Research Rotor (BRR), a generic research rotor, is used. The development of individual mod-

els of the testbed and the rotor system is used to an advantage by selecting analyses that are best suited to model

each system. For the ARES-II model, the Dynamic Analysis and Design System (DADS) multibody dynamics

analysis is used. For the rotor system, the second generation version of the Comprehensive Analytical Model of
Rotorcraft Aerodynamics and Dynamics (CAMRAD-II) is used. Other analyses are suitable for use in place of
DADS and CAMRAD-II.

Impedance matching is used to couple the BRR to the ARES-II. Impedance matching requires that the struc-

tures to be coupled be represented with a linear model. This representation is of no consequence for the ARES-H,
a linear system. However, since rotor systems are inherently nonlinear systems, care must be exercised to ensure

the proper application of the impedance-matching approach. For the BRR, fixed-hub forward flight trim condi-
tions for lg steady flight are used with a correction applied to account for the loads due to rotor hub motion.

The process used to perform coupled rotor-testbed analysis is as follows:

1. Develop a mobility matrix [A] for the ARES-II by using the DADS model. This matrix is generated by applying

4P and 8P dynamic loads at the interface joints and characterizing the 4P and 8P motion at the interface joints.

2. Develop a motion matrix [B] for the ARES-II by using the DADS model. This matrix is generated by prescribing

motions of the Stewart platform and characterizing the motion at the interface joints.

3. Develop the fixed-hub load conditions (no motion) at the interface joints for the BRR by using the CAMRAD-II

model. Then the impedance matrix [C] is generated by prescribing hub motions and characterizing the loads at the
interface joints.

4. The resulting mobility, motion, and impedance matrices are coupled through simple matrix equations.

This study has shown that the impedance-matching approach is a viable method for the analysis of model rotor

systems coupled to the ARES-II aeroelastic rotor research testbed. The impedance-matching method has been

used to an advantage by generating independent models of the ARES-II and the BRR system. Thus, to couple

alternate rotor systems to the ARES-II requires only the generation of the impedance model for the new rotor sys-

tem. Additionally, the experimental verification of the ARES-II model will be eased because it may be exercised

in a stand-alone mode for comparison with shake and actuation tests. This study has extended the impedance-
matching techniques evident in the literature by including the effects of actuated hub motion and by using two

interface joints between the rotor system and the testbed.

Based on the experience developed in rotor-body coupling techniques during this study and the examination of

the results, the following conclusions were found:

1. Although impedance matching is a linear theory approach, the effect of rotor system nonlinearity must be consid-

ered throughout the analysis. The rotor impedance matrices for this study have been developed by using both
cosine and sine harmonic hub motions with checks to ensure that the rotor system response remained in the linear
range.

2. The effect of both hub and control system (swashplate) loads is necessary to properly model the coupled rotor-

testbed system. Control system loads have been shown to be of particular importance for the calculation of normal
force and pitching and rolling moments. Neglecting the swashplate load path has been shown to result in fixed-
system load errors of up to 30 percent.

3. Significant ARES-II body motion coupling and phase lag are evident in the actuated motion results for both the
stand-alone ARES-II and for the coupled rotor-testbed system. Stewart platform control vectors required to obtain

pure hub motion uncontaminated by body coupling or phase lag may be developed for the stand-alone ARES-II
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with simple matrix manipulations. However, no closed-form method of calculating the required control vector is

possible for the coupled rotor-testbed system. Therefore, the analytical results indicate that a closed-loop control

system is necessary to generate desired hub motions.

4. Based on the analytical results, the ARES-II rotating balance is expected to be a more reliable loads measurement

device than the fixed-system balance. The results suggest that the rotating balance is essentially free of loads con-

tamination due to system dynamic response. The fixed-system balance results indicate significant errors for all

load cases examined.

NASA Langley Research Center
Hampton, VA 23681-2199
December 16, 1997
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Appendix A

Rotating to Nonrotating Coordinate Transformations

In the study of helicopter rotor system dynamics, the transformation of displacements and loads

from the rotating frame to the nonrotating frame is of prime importance. This appendix describes the

mathematical formulation of such transformations. Special attention is given to four-bladed articulated

rotor systems to emphasize the equations necessary for analysis of the Basic Research Rotor (BRR).

Figure A 1 illustrates a nonrotating (or fixed-system) coordinate frame represented by the X, Y,Z axes

and a rotating-system coordinate frame represented by the x,y,z axes. Although the nonrotating coordi-

nate frame is often also called the fixed system, it should not be confused with the ground-fixed inertial

system. The nonrotating coordinate frame is a body-fixed system placed within the helicopter or testbed

fuselage. The orientation in use throughout this work is +X-axis aft, +Y-axis right side, and +Z-axis up

along the rotor shaft axis with origin placed at the center of rotation. The rotating coordinate frame

(x,y,z) is a hub-fixed coordinate system that revolves about the Z-axis with constant angular velocity f_

whose origin is placed at a constant radius e from the Z-axis. For the purposes of this development, the

origin of the rotating frame is constrained to lie in the X-Y plane at all times and the distance e is defined

as the rotor flap-lag hinge offset. For the BRR, the flap and lag hinges are coincident; this allows for a

single value of e. For rotor hubs with noncoincident flap and lag hinges, two values of e are necessary in

the transformation formulation. The x- and y-axes are constrained to the X-Y plane and oriented such

that the +x-axis lies toward the trailing edge and the y-axis lies along the radius of the reference blade.

The +z-axis is oriented up and is parallel to the Z-axis. The azimuthal position of the rotating frame rel-

ative to the nonrotating frame is given by W. The azimuth is indexed such that W = 0 ° when the refer-

ence blade is over the X-axis. This position corresponds to the one when the +y-axis is aligned with the

+X-axis. The azimuth angle increases with counterclockwise rotation of the rotating frame.

By inspection of figure AI, the displacement, force, and moment relationships between the refer-

ence blade root and the nonrotating frame are evident and are

I !l{xtY = c sin
Z ;s_ y0 z

(A1)

[ xj zLrsin oc°s Fy = l-COS _ sin _1/ Fy

0 F z

(A2)

MX [?e 0
My = 0

M z 0
esin  I x]eOs

F z

(A3)

As a simple example, one may define the vertical shear force in the nonrotating frame (Fz) due to verti-

cal blade root shear (Fz) by using equation (A2). The result is

F Z = F z
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Figure A1. Rotating and nonrotating frame coordinate systems.

However, note that this result only includes the effect of a single blade. For multibladed rotor systems, deter-

mining the forces and moments in the nonrotating frame by including the effect of all blades is necessary. There-
fore, the equation for the total nonrotating vertical shear is

N

Fztot = _._ Fzb (A4)
b=l

where b is the blade index and N is the number of blades. Assume now a Fourier series to describe the periodic
force for each blade:

Fzb = _._ (Fz. c cos n_b + Fz. _ sin nXllb) (A5)
n=0

where the index n is harmonic number, the subscripts c and s indicate the cosine and sine components of the force,

and b is the azimuthal position of the bth blade as described by

2bg
_b = _/+ 7 (A6)

where 41 is the azimuthal position of the reference blade. Substituting equation (A6) into equation (A5) and the

result into (A4) yields the equation for the total nonrotating frame vertical shear as

N

b=l n=0
COS n_b + Fz_ _ sin n_llb) (A7)

Further development, however, will show that equation (A7) may be further reduced. To aid in this development
several trigonometric identities are used as follows:

sin(ix + _) = sin _ cos 13+ cos oc sin 13 (A8)
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cos(tx - 13)= cos o_ cos 13+ sin tx sin 13

cos(a + 13)= cos a cos _ - sin tx sin 13

sin(or- [3) = sin tx cos 13- cos tx sin [3

(A9)

(A10)

(All)

Reduction of equation (A7) is achieved by developing equations for one harmonic at a time, beginning with the

0th harmonic (mean) and working through to the 5th harmonic. Because the BRR is a four-bladed rotor system,

N = 4 is assumed throughout the remainder of the development.

Forn =0, N=4:

Fzt°t n = 0

4

= Z IFzoc cos(0 "q/b)+ Fzo c sin(0-q/b) 1

b=l

4

b=l

= 4F (A12)
ZOc

Equation (A12) shows the expected result: the nonrotating frame vertical shear is four times the vertical blade root
shear.

Forn = 1:

4

Fzt°t n=l = E IFZlc c°s(q/b)+ Fzls sin(q/b)]

b=l

4 [FZIc ( b_+F2) zts (q/ ?)]= X cos q/+ sin +

b=l

Equations (A10) and (A11) allow for reduction of the cosine and sine terms depending upon blade number.

For blade 1:

(A13)

cos(q/+ 2)=-sin q/

sin(q/+ 2)= cosq/

For blade 2:

cos(q/+ re) = -cosq/

sin(q/+ _) = -sinq/

For blade 3:
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Forblade4:

cos(_+ 2n) = cos _g

sin0g + 2n) = sin _g

Substituting these expressions into equation (A13) yields

= Fzlc(-SinFzt°t n= 1 _ - cos _ + sin _ + cos _)

+ Fzls(cos _- sin _- cos _t+ sin_)

=0

Each harmonic may be evaluated similarly.

For n = 2:

For n = 3:

For n = 4:

Therefore,

Fzt°t n=2 4 IF 2(Ig+_) sin2(lg+_) 1_" E Z2c COS + Fz2 s

b=l

= F (-cos 2_+ cos 2_- cos 2_ + cos 2_)
Z2c

+ Fz2 (-sin 2_ + sin 2_11- sin 2_ + sin 21g)

=0

F zt°t n=3 4 IF 3(Ig+_/+ sin 3(Ig+_) 1= _._ z3 c cos Fz3 s

b=l

= Fz3c(sin 3_g - cos 3lit - sin 31g + cos 31g)

+ Fz3s(-cos 3_g - sin 3_g + cos 3gt + sin 3_g)

=0

Fzt°t n=4 4 IF cos411g+b-_)+Fz4s sin4(Ig+b.b.b-_) 1_" _ z4c

b=l

= Fz4c(COS 41g + cos 4gt + cos 4lg + cos 4_I/)

-I- Fz4s( sin 4gt + sin 4_g + sin 4_g + sin 4_g)

= 4(Fz4 c cos 4_g+ Fz4 s sin 4_g)

Fztot4 c = 4Fz4c }
FZtot4" = 4Fz4 s
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Forn = 5:

Fzt°t n=5

4

= ZfFzscCOS5(_+?)+FzssSin5(w+b---_) ]
b=l

= Fzs(-sin 5_ - cos 5_ + sin 5_ + cos 5_)

+ Fz5 (cos 5_I/- sin 5_ - cos 5_ + sin 5_)

=0

Continued analysis would confirm that rotating frame, vertical blade root shear is converted to vertical nonrotating

frame shear only if the harmonic number is an integer multiple of the number of rotor system blades. For a four-

bladed rotor system, this may be represented mathematically by

F Ztotnc = 4 Fznc ]
FZtotns = 4Fz, s

(n = 0, 4, 8.... ) (AI6)

An analysis similar to the preceding development of the vertical shear loads may be extended to the transfer of

chordwise blade root shears to yawing moments in the nonrotating frame; that is,

MZtotnc = -4eF xnc

Mzt%s = -4eF x. _

(n = 0, 4, 8.... ) (A17)

However, the manner in which axial (fore-and-aft) and side loads are generated in the nonrotating frame is not as

straightforward. Therefore, the axial load equations are developed to ensure the clarity of the proper procedures.

Equation (A2) shows that the axial nonrotating frame load Fx is generated by a combination of chordwise

blade root shears Fx, and blade root axial loads Fy. The total axial load may be represented by

N

FXto t = Z (Fx sin _llb + Fy cos _l/b) (A18)
b=l

where

oo

:C c°sn b÷ xnssin
n=0

oo

Fy = _ (F c°s nlgb + Fy.$ sin n_gb)ync
n=0
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and q/bwasdefinedin equation(A6).Expandingequation(A18)yields

= _ n_0[( F c°sn_b+ sinn_b)in_t bFxtot Xnc F xn,
b=l =

+(Fy,, c c°snqlb+Fyns sinn_lb)COS_b]
(A19)

Again assuming a four-bladed rotor system and using the trigonometric identities in equations (A8) through (A11)
give the following results:

For n = 0, N = 4:

Fxt°t ]n = 0

4

= E Fyo c
b=l

= 4F
YOc

(A20)

For n = 1:

Fzt°t n= 1 cos (_ + ?)+ Fxl, sin (_ + ?)]sin (_ + _)= E Xlc

b=l

+[FylcC°S(_l+?)+Fyls sin (_l+?)]c°s (_11+?) }

= Fxic(-sin _ cos _ - sin V cos ql - sin q/cos _ + sin _cos _)

xl (cos 2 2 sin2v)+ F _/+ sin2_F + cos _II +

2 2
+ Fylc(Sin2 V + cos V + sin _ + cos2_)

+ Fyl (-sin _ cos qJ + sin V cos V - sin V cos V + sin _ cos _F)

= 2Fxl" + 2Fyls (A21)
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Forn = 2:

Fxt°t n=2

For n = 3:

Z Fx2 c cos 2 _g
b=l

+ 2 ) xz_ sin 2 (_g sin

+[Fy2cC°S2(_g+b-_)+Fy2 sin2(Ig+_l]c°s [Ig+b-_ll

= Fx2c(-Cos 2_ cos _t - cos 2_ sin _ + cos 2_ cos _g+ cos 2_ sin _)

+ Fx2 (-sin 2_ cos _g - sin 2_ sin _ + sin 2_ cos _t + sin 2_ sin_g)

+ Fyzc(COS 2_ sin _ - cos 2_ cos _g - cos 2_1/sin _g+ cos 2_cos _)

+ Fy2 (-sin 2_ sin _ - sin 2_g cos _ - sin 2_ sin _g+ sin 2_ cos _)

=0

Fxt°t n=3 = Z COSX3c

b=l

+ [Fy3c cos

(_g+?)+Fx3 sin(_+_)]sin(_g+?)

(_+?)+Fy3 sin(_/+_-_)]c°s/_/+_]

= Fx3 (sin 3_ cos _¢ + cos 3_ sin x¢+ sin 3_t cos _t + cos 3_ sin_)

+ Fx3s(-COS 3_t cos _ + sin 3_t sin _ - cos 3_ cos _ + sin 3_ sin _t)

+ Fy3c(-Sin 3_ sin _ + cos 3_ cos _ - sin 3_ sin _ + cos 3_t cos _)

+ Fy3 (cos 3_ sin _ + sin 3_ cos _ + cos 3_ sin _ + sin 3_ cos _)

= 2Fx3 c sin 4_t - 2Fx3_ cos 4_ + 2Fy3_ cos 4_ + 2Fy3_ sin 4_

= 2(Fx3 _ + Fy3flsin 4_1/+ 2(-Fx3 ' + Fy3c ) cos 4_
(A22)
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For n = 4"

FXtot n=4

For n = 5:

N

= Z IIFx4cC°S(_l+_)+Fx4s sin Ilql+b-_l]sin (_l+?)

b=l

+[Fy4cC°S(_l+?)+Fy, s sin (V+_)lc°s (_1+?)}

= Fx4c(cos 4gt cos W - cos 4W sin W - cos 4W cos W + cos 4W sin W)

+ Fx4s(Sin 4 W cos W - sin 4W sin W - sin 4W cos W + sin 4W sin _t)

+ Fy4c(-COS 4q/ sin W - cos 4 W cos _t + cos 4 W sin _1/+ cos 4 W cos W)

+ Fy4 (-sin 4W sin W + sin 4 W cos W + sin 4 W sin W + sin 4 W cos W)

=0

Fxt°t n=5 "{E= _ xscCOS(W+_)+Fxs, sin (W+ sin (W+?/
b=l

+[FyscC°S(_t+?)+FyssSin(w+b-_)lc°s(_+b-_)}

= Fx5 (-sin 5W cos W + cos 5 W sin W - sin 5W cos _t + cos 5 W sin _t)

+ Fx5 (cos 5W cos W + sin 5 W sin ¥ + cos 5W cos W + sin 5W sin W)

+ Fysc(sin 5_t sin W + cos 5 W cos W + sin 5W sin W + cos 5W cos W)

+ Fyss(-cos 5_1/ sin W + sin 5W cos W - cos 5W sin W + sin 5W cos W)

= 2Fx5 _ sin(-4W) + 2Fx5" cos 4 W + 2Fys_ cos 4W + 2Fys, sin 4 W

= 2(-Fxsc+ Fyss_in 4W+ 2(Fx5 + Fysc_°S 4W
(A23)

Combining equations (A22) and (A23) yields the following cosine and sine components of the 4-per-rev axial load

in the nonrotating frame:

= 2(-F x +Fy +F x +Fy )]
FXtot4c 3s 3c 5s 5c

= 2(F x + F r - F x + Fy ) |
F Xtot4s 3c 3s 5c 5c j

(A24)

Finally, the following equations (eqs. (A25) through (A36)) provide a set of general results for each component of

force and moment in the nonrotating frame due to blade root shear in the rotating frame. Note that these equations
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are valid only for four-bladed rotor systems and that the subscript denoting total has been dropped from the nonro-

tating frame force and moment terms.

.- -I-Fx,,c = 2 Fx(n_l)s+ Fy(n_l)c Fx(,,+_) s + Fy<,,+ 1)_) (n = 0, 4, 8, ... ) (A25)

FX,, = 2(Fx¢ +F -F +Fy( )n-I )c Y(n-I )s X(n+l )c n+l )s

(n = 0, 4, 8, ...) (A26)

(n = 0, 4, 8, ...) (A27)

- -F -F )Fyn s = 2 Fx< n-I )s + Fy(n_l )c x¢ n+l )s Y( n+l )c
(n = 0,4,8,...) (A28)

Fz,,c = 4Fz,,c
(n = 0, 4, 8, ...) (A29)

Fz,,, = 4Fzn s
(n = 0,4,8,...) (A30)

Mx,,c = 2e(-Fz(,,__)+ Fz(,, + _)_)
(n = 0,4, 8, ...) (A31)

Mx. = 2e(F z(,,_ _- Fz(,,+ _)_)
(n = 0, 4, 8 .... ) (A32)

My.= 2e(F z(,, - °c + Fz_,, + _)_)
(n = 0,4,8 .... ) (A33)

F + ) (n = 0, 4, 8 .... ) (A34)My_ = 2e z(._l). Fq,,+_)_

MZ, c = -4eFx,,c
(n = 0, 4, 8 .... ) (A35)

MZ. _ = -4eFx., (n = 0, 4, 8 .... ) (A36)
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Appendix B

ARES-II Model Data

This appendix provides component data necessary for modeling the ARES-H with the Dynamic Analysis and

Design System (DADS) software. Although all data are not specifically provided, an experienced DADS user can

generate a working model similar to that developed for this study. This appendix is organized into tables of rigid-
body, joint, elastic element, and miscellaneous element data. All locations are referenced to an inertial coordinate

system oriented in the manner used throughout the report: +X, aft; +Y, right; +Z, up. The bottom center of the stand

baseplate is placed at the inertial coordinate system origin.

B1. Rigid Bodies

Table B 1 lists the rigid-body components necessary to model the ARES-II. Included in the table are the body

center of gravity with respect to the inertial coordinate system, the mass of the body, and the inertia of the body
with respect to the center of gravity.

Table B 1. ARES-II Model Rigid-Body Components

Body description

Stand base

Stand yoke

Longeron

Fixed-system balance
bottom

Fixed-system balance
top

Main shaft housing

Main shaft and drive
sheave

Intermediate shaft

housing

Intermediate shaft and
drive sheaves

Drive motor

Drive motor sheave

Rotating balance
bottom

Rotating balance top

Mast

Mass,

lb-s2/in.

1.425

0.1067

0.1571

0.0871

0.1350

0.1266

0.0574

0.0179

0.0279

0.1703

0.0018

0.0020

Center of Gravity, in.

X Y Z

0 0 16.304

-0.510 0 68.730

-4.529 0 71.691

1.400 0 70.796

1.400 0 75.090

1.010 0 83.220

1.400 0 79.660

--6.574 0 79.409

-5.125 0 80.884

-13.653 0 77.539

-13.795 0 83.337

1.400 0 91.304

1.400 0 92.577

1.400 0 94.615

Mass moment of inertia about body c.g., lb-in-s 2

Ixx Iyy lzz

704.22

3.3872

6.4772

0.6633

1.3665

1.0499

1.4559

0.0957

0.3238

1.8022

0.0008

0.0016

706.39

0.4592

5.7451

0.6979

1.3670

1.0799

1.4559

0.1138

0.3238

1.8022

0.0008

0.0016

265.79 0 0 0

3.1791 0 0 0

11.5442 0 -1.2215 0

1.1559 0 0 0

2.1458 0 0 0

0.4970 0 0 0

0.5157 0 0 0

0.1037 0 -0.0264 0

0.1767 0 0 0

0.8264 0 -0.0166 0

0.0010 0 0 0

0.0028 0 0 0

0.0034 0 0 0

0.0038 0 0 0

B2. Joints

Five joint types are used to model the ARES-II: translational, revolute, spherical, universal, and bracket. The

translational joint eliminates all degrees of freedom between two bodies except one linear dof. The revolute joint

eliminates all dofs between two bodies except one angular dof. The spherical joint eliminates linear dofs but

allows all angular dofs, and the universal joint eliminates all linear and one angular dof. The bracket joint elimi-
nates all degrees of freedom between two bodies effectively making them one larger rigid body. Table B2 lists all

joints, their location with respect to the inertial coordinate system, and the bodies that the joints connect.
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Table B2. ARES-II Model Joints

Jointtype

Revolute

Universal

Universal

Universal

Universal

Universal

Universal

Spherical

Spherical

Spherical

Spherical

Spherical

Spherical
Bracket

Bracket

Revolute

Bracket

Revolute

Bracket

Revolute

Bracket

X

-0.600

-7.675

-7.675

2.402

2.402

8.513

8.513

-5.806

-5.421

8.748
8.748

8.513

8.513

1.400

-2.725

1.400
1.400

-5.125

-9.125
-13.795

1.400

Jointiocation, in.

0
-6.580

6.580
-7.100

7.100

-0.625
0.625

0

0

-5.724
5.724

-5.450
5.450

0

0
0

0

0
0

0

0

Z

74.040

74.340

74.340
74.345

74.345

75.790

75.790

70.353

70.560
69.961

69.961

69.728

69.728

75.590

80.140

77.710

90.915

79.941

78.710

82.471

92.915

Body 1

Stand yoke
Longeron

Longeron

Longeron
Longeron

Longeron
Longeron
Actuator 1 Rod

Actuator 2 Rod

Actuator 3 Rod

Actuator 4 ROd

Actuator 5 Rod

Actuator 6 Rod

Fixed-system balance top

Main shaft housing

Main shaft housing
Main shaft and drive sheave

Intermediate shaft housing

Intermediate shaft housing
Drive motor

Rotating balance top

Body 2

Longeron

Actuator 1 body

Actuator 2 body

Actuator 3 body

Actuator 4 body

Actuator 5 body

Actuator 6 body

Fixed-system balance bottom

Fixed-system balance bottom

Fixed-system balance bottom

Fixed-system balance bottom

Fixed-system balance bottom

Fixed-system balance bottom

Main shaft housing

Intermediate shaft housing
Main shaft and drive sheave

Rotating balance bottom
Intermediate shaft and drive sheaves

Drive motor

Drive motor sheave
Mast

B3. Elastic Elements

Three types of elastic elements are used to model the ARES-II: beam, bushing, and spring-damper. The bush-

ing is a six-degree-of-freedom elastic element with damping. The nature of the beam and spring-damper are

self-explanatory. Table B3 provides a list of all elastic elements, their connection locations in inertial coordinates,

and the bodies that they connect.

Table B3. ARES-II Model Elastic Elements

Elastic

element type

Spring damper l

Spring damper t

Spring damper l

Spring damper 1

Beam 2

Bushing 3

Bushing 4

Connection location for body 1,
in.

X Z

-17.854 0

-17.854 0

17.854 0

17.854 0

0 30.0

1.400 72.590

1.400

Connection location for body 2,

Y

-17.854

-17.854

17.854

-17.854

0

0

91.915

X

- 17.854

-17.854

17.854

17.854

0

1.400

1.400

in.

Y

-17.854

17.854

17.854

-17.854

0

0

0

0

0

66.840

Body 1

72.590

91.915

Pad 1

Pad 2

Pad 3

Pad 4

Stand base

Fixed-system balance
bottom

Rotating balance
bottom

Body 2

Stand base

Stand base

Stand base

Stand base

Stand yoke

Fixed-system balance
top

Rotating balance top

ISprint-darnper properties:/_ = 6000.0 lb/in.; Cz = 20.0 lb-s/in.

2Beam properties: Elxx = 1.163 x 10 9 lb-in2; EIry = 1.163 x 10 9 Ib-in2; GJ = 8.95 x 108 lb-in 2
3Bushing properties:

Kx = 862,000.0 lb/in.; Kv = 512,800.0 lb/in.; K z = 93,400.0 lb/in.
6 6

KOx = 18.75 x 10 in-lb/rad; KOY= 17.44 x 10 in-lb/rad; Koz = 26.30 x 106 in-lb/rad

Cx = 8.6 lb-s/in.; Cv = 5.1 lb-s/in.; Cz = 0.9 lb-s/in.

Cox= 1875.0 in-lb-sdrad; Coy= 1744.00 in-lb-s/rad; Coz = 2630.0 in-lb-s/rad
4Bushing properties:

Kx = 709,000.0 lb/in.; Ky = 709,000.0 lb/in.; K z = 2.78 x 106 lb/in.

Kox= 2.76 x 10 6 in-lb/rad; KOY= 2.76 x 106 in-lb/rad; Koz = 2.82 × 10 6 in-lb/rad
Cx = 7.1 lb-s/in.; Cy = 7.1 lb-s/in.; Cz = 27.8 lb-s/in.

Cox= 276.0 in-lb-slrad; Coy= 276.0 in-lb-slrad; Coz = 282.0 in-lb-s/rad
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B.4. Miscellaneous Elements

The miscellaneous elements consist of constraint and point-of-interest elements. The constraint elements are

used to control the length of the ARES-II actuators, hold the longeron in a fixed position relative to the stand, con-

strain the stand degrees of freedom that are not restrained by the mounting pads (i.e., lateral displacement and

yaw), and develop the relationships for the drive train speed reduction ratio. The point-of-interest elements allow

for the output of displacement information at a point on a rigid body. Table B4 provides the location of the point-

of-interest elements used for the hub and swashplate interface joints.

Table B4. ARES-II Model Point-of-Interest Elements

Body
Location, in.

Purpose
X Y Z

Main-shaft housing 1.400 0 87.908 Swashplate interface joint

Mast 1.400 0 96.128 Hub interface joint
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Appendix C

Basic Research Rotor Model Data

The tables in this appendix provide the input necessary to develop the rotorcraft shell and core models of the
Basic Research Rotor. Note that all CAMRAD-II coordinate frames are not necessarily the same as those used in

this report. Table C1 provides the basic input data to the rotorcraft shell. Table C2 provides run-time modifications

to the shell model and the core model inputs.

During the research program it was noted that results obtained when modeling the R-12 test medium were

inconsistent with expected trends. This inconsistency was eliminated if the model and environment parameters
were scaled for air. The most obvious differences were for the high-speed flight regime (_t > 0.30); however, some

differences were noted at the lower speeds. The reason for the inconsistency is unknown as CAMRAD-II executes

internally in a nondimensional format. An errant dynamic viscosity term is suspected of affecting the high-speed

aerodynamic environment when executing models in the R-12 medium.

To obtain the best possible results the scaled model for R- 12 was converted to execute as a scaled model in air.

Therefore, the tables reflect the inputs necessary to execute an air-scaled model of the BRR. The geometric scaling

remained the same. However, the mass and stiffness scaling has been modified according to the relations

mair = 0.396mR_12

EIair = 1.973EIR_12

The mass scaling applies to mass moment of inertia scaling and the stiffness scaling applies to the torsional

stiffness scaling as well. Because the geometric scaling is the same, displacement results are not scaled. However,

forces and moments must be scaled according to the relations

FR_I2 = 0.5054Fai r

MR_12 = 0.5054Mai r

Table CI. BRR CAMRAD-II Shell Inputs

! Basic

&NLDEF

&NLVAL

Research Rotor base shell input deck

&END

&NLDEF

&NLVAL

REND

&NLDEF

&NLVAL

&END

&NLDEF

&NLVAL

REND

&NLDEF

&NLVAL

&END

&NLDEF

class-'CASE' &END

TITLE:'Basic Research Rotor',

OPUNIT-I, TMTASK=I,

OPDENS=I, ALTMSL=0.

class='TRIM' REND

VTIPIN=3, MTIP=0.65,

DOFA:6*0, DOFD=8*0,

OPTRIM:0, MPSI:24, MPSIAV:4,

class='TRIM ROTOR', name:'ROTOR i' REND

DOFG=0, DOFS=0, DOFM=7*I,33*2, DOFB:8*I,4*0, OPMODE=I,

class='FLUTTER' &END

OPFLUT:0, OPMEAN:I, OPBLD:0, OPSTAB:0, OPAERO=0,

DOFA=6*0, DOFD=8*0, TASK=I,3*0, OPEIGN=I, MEIGN=2,

class='FLUTTER ROTOR', name='ROTOR i' REND

OPAERO=0, OPMODE=I, DOFM=7*I,33*2, OPTRAN=I,

class='AIFRFRAME', type='STRUCTURE' &END
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&NLVAL TITLE='ARES-2 Testbed - Simple Model',

CONFIG=0, OPFREE=0, OPTRAN=0, OPAERO=0,

WEIGHT=I.0, MASSR=0.29984, IXXR=0., IYYR=0., IZZR=2.193752,

IXYR=0., IXZR=0., IYZR=0.

FSCG =-0.0500, BLCG =0., WLCG =6.17,

FSRTR= 0.1167, BLRTR=0., WLRTR=8.01,

ASHAFT=0., HSP=0.685,

&END

&NLDEF class='AIRFRAME', type='CONTROL' &END

&NLVAL K0=I.0, KC=I.0, KS=I.0,

&END

&NLDEF class='ROTOR', type='STRUCTURE', name='ROTOR i' &END

&NLVAL TITLE='Basic Research Blades V.8 on Articulated Hub',

RADIUS=4.685, NBLADE=4, ROTATE=l, SIGMA=0.0821,

CONFIG=I, OPAERO=I, GIMBAL=0, CONTRL=2,

HINGE=3, EFLAP=0.0534, ELAG=0.0534, DLAG=I5.96,

PITCH=l, LOCKP=I, EPITCH=0.08,

OPTPP=2, ETPP=0.0534,

LOCKPL=0, EPH=0.08894,

XSP=0.03113, YSP=0.01939, ZSP=-0.14621,

XPH=0.02490, YPH=0.04002, ZPH= 0.,

TWINzl, TWISTL=0.,

KNODE=4, RNODE=0.2,0.4,0.6,0.8, OPWING=I, OPPOS=I, NRPOS=0,

GDAMPU=0.01, GDAMPV=0.01, GDAMPW-0.01, GDAMPT=0.01

KNODE=5, RNODE=0.1221, 0.2, 0.4, 0.6, 0.8, DRELST=0.07,

NPROP=I0,

RPROP=0., 0.05339, 0.05341, 0.08, 0.1220, 0.1222,

0.16, 0.18, 0.20, 1.0,

KP=5"0.02043, 2*0.01350, 0.00451, 2*0.00669,

EIFLAP=2*9.865E5, 3*189244.0, 2*13179.0, 309.2, 2"197.3,

EILAG= 2"II.838E5, 3*189244.0, 2*24051.0, 15145.0, 2"5919.0,

GJ= 2"9.865E5, 3*151394.0, 2*11178.0, 429.7, 2*268.3,

EA= 10"414330.0,

MASS= 2"0.1188, 3*0.05576, 2*0.02895, 0.00653, 2*0.00634,

ITHETA=2*0.003168, 3*0.000170, 2*0.000075, 0.000012, 2*0.000053,

IPOLAR=2*0.003168, 3*0.000170, 2*0.000075, 0.000012, 2*0.000053

&END

&NLDEF class='ROTOR', type='AERODYNAMICS', name='ROTOR i' &END

&NLVAL OPSCEN=I, CHORD=0.3021, NPANEL=I9, REDGE=0.19,0.28,0.35,

0.42,0.48,0.54,0.59,0.64,0.69,0.73,0.77,0.81,0.84,0.87,

0.90,0.92,0.94,0.96,0.98,1.0

&END

&NLDEF class='ROTOR', type='INFLOW', name='ROTOR i' &END

&NLVAL OPSCEN=I &END

&NLDEF class='TABLES' &END

&NLVAL &END

&NLDEF action='end of shell' &END

&NLDEF action='end of core' &END
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Table C2. BRR CAMRAD-II Run-Time Inpu_ and Co_ Changes

! BRR model w/ hub motion

!

setenv BLADEAIRFOIL1 lr0012.tab

setenv SHELLINPUT thesisl.dat

camrad > thesisl.out <<'endofinput'

&NLJOB NCASES=I &END

! .... =====--====-- ==============================================================

&NLDEF class='CASE' &END

&NLVAL TMTASK=I,

OPDENS=I, ALTMSL=0.

&END

&NLDEF class='TRIM' &END

&NLVALRELAXC=0.1, WINDIN:2, WVEL=0.05,

OPTRIM=I, MTRIM=4,

MNAME(1)='CL/S' , VNAME(1)='COLL' , CLTRIM= 0.07065,

MNAME(2)='CX/S' , VNAME(2)='PITCH' , CXTRIM=-0.00013,

MNAME(3):'BETAS', VNAME(3)='LATCYC', BSTRIM=0.0,

MNAME(4)='BETAC', VNAME(4)='LNGCYC', BCTRIM=0.0,

COLL=II.14, PITCH=0.15, LATCYC=-3.37, LNGCYC:0.89,

ITERU=I, ITERP=I, NWPRNT:I, TOLERT:0.5, LEVEL=3,

LEND

&NLDEF class='TRIM ROTOR', name='ROTOR i' &END

&NLVAL MHSEN:3, MCSEN=3, MPSEN 3,

GDAMPM=40*0.01

&END

&NLDEF class='FLUTTER' &END

&NLVAL OPEIGN=0, MPSIAV=I &END

&NLDEF class='FLUTTER ROTOR', name='ROTOR i' &END

&NLVAL &END

&NLDEF class='AIRFRAME', type='STRUCTURE' &END

&NLVAL &END

&NLDEF class='ROTOR', type='STRUCTURE', name='ROTOR i' &END

&NLVAL OPAERO=I, OPPOS=4, NRPOS:2,

LEND

&NLDEF class='ROTOR', type 'AERODYNAMIC', name='ROTOR i' &END

&NLVAL &END

&NLDEF class='ROTOR', type='WAKE', name='ROTOR i' &END

&NLVAL OPFW=I, OPNW=I, OPLL=I, OPAX=0,

KNW=4, KRU=6, KFW:96, KDW=96,

OPRWG i, FK2TWG=0.9, TWIST=0.,

OPCORE=0, CORE(1)=0.2,

OPFWG=2, MFWG=6, COREWG=0.2, MBWG=4, DQWG=2*0.0003,

ITERWG=2, RLXWG=0.5, RFWG=0.04,0.5, RNWG=0.04,0.125,

RUDWG=0.5, OPDWG=I, MPSIWG=24, OPDISP=3,1

LEND

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

&NLDEF action='end of shell' &END

[___-- =========================================================================

' Begin CORE input

[

!==: ==== ================================================================== --_

! Set in proper hub mass and inertia properties

! Add Hub Displacement and Hub Rotation sensors and output

! Add Non-rotating force and moment sensors and outputs which include

! hub mass

&NLDEF class='COMPONENT', type='RIGID BODY', name='ROTOR 1 HUB' &END



&NLVALMASS=0.663,IXX=0.0377,IYY=0.0377,IZZ=0.0647,
IXY=0. , IXZ=0. , IYZ=0. ,

NSEN=8,KSEN=8,SENV(5)=5,6,7,8,
SNAME(5)='HUBDISPLACEMENT',SLABL(5)='HUBDISP',
SNAME(6)='HUBROTATION' , SLABL(6)='HUBROT',
SNAME(7)='NONROTATINGHUBFORCE(w/ HUB)' ,
SNAME(8)='NONROTATINGHUBMOMENT(w/ HUB)',
KINDQ(5)=4*I,IDENTQ(5)=4*I,QUANT(5)=I,7,41,42,
KINDR(5)=2*6,FRAMER(5)=2*'',SCALE(5)=4*1.0

&END
!
&NLDEFclass:'OUTPUT',type='', name='HUBDISPLACEMENT'&END
&NLVALKINDY:4,YNAMEC='ROTOR1 HUB',YNAMEV='HUBDISPLACEMENT',

TMPART='ROTOR1 HUBLOADSENSOR',
TNPART='ROTORi HUBLOADSENSOR',
FLPART='ROTOR1 HUB',
NTPRNT=I,NHPRNT=I,MTIME=24,MHARM=I0,OPHARM=I

&END
!
&NLDEFclass='OUTPUT', type='', name='HUB ROTATION' &END

&NLVAL KINDY=4, YNAMEC='ROTOR 1 HUB', YNAMEV='HUB ROTATION',

TMPART='ROTOR 1 HUB LOAD SENSOR'

TNPART='ROTOR 1 HUB LOAD SENSOR',

FLPART='ROTOR 1 HUB',

NTPRNT=I, NHPRNT=I, MTIME=24, MHARM=I0, OPHARM=I

&END

!

&NLDEF class='OUTPUT', type='', name='NONROTATING HUB FORCE' &END

&NLVAL KINDY=4, YNAMEC='ROTOR 1 HUB', YNAMEV='NONROTATING HUB FORCE (w/ HUB)',

TMPART='ROTOR 1 HUB LOAD SENSOR',

TNPART='ROTOR 1 HUB LOAD SENSOR',

FLPART='ROTOR 1 HUB',

NTPRNT=I, NHPRNT=I, MTIME=24, MHARM=I0, OPHARM=I

&END

&NLDEF class='OUTPUT', type='', name='NONROTATING HUB MOMENT' &END

&NLVAL KINDY=4, YNAMEC='ROTOR 1 HUB', YNAMEV='NONROTATING HUB MOMENT (w/ HUB)',

TMPART='ROTOR 1 HUB LOAD SENSOR',

TNPART='ROTOR 1 HUB LOAD SENSOR',

FLPART='ROTOR 1 HUB',

NTPRNT=I, NHPRNT=I, MTIME=24, MHARM=I0, OPHARM=I

&END

!

&NLDEF class='OUTPUT', type='', name='NONROTATING SWASHPLATE LOAD' &END

&NLVAL KINDY=4, YNAMEC='PYLON', YNAMEV='NONROTATING SWASHPLATE LOAD',

TMPART='ROTOR 1 HUB LOAD SENSOR',

TNPART='ROTOR 1 HUB LOAD SENSOR',

FLPART='ROTOR 1 HUB',

NTPRNT=I, NHPRNT=I, MTIME=24, MHARM=I0, OPHARM=I

&END

I
===============================================================================

! Delete unused components

&NLDEF class='COMPONENT', type='RIGID BODY', name='AIRFRAME ROTOR i',

action='delete'

&END

t

===============================================================================

! Build PYLON ROTOR 1 component from AIRFRAME ROTOR 1 input

&NLDEF class='COMPONENT', type='RIGID BODY', name='PYLON ROTOR i' &END

&NLVAL LABEL='PY RTR I', DEBUG=0,

TMPART='AIRFRAME',
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TNPART='ROTORCRAFT',

FLPART='AIRFRAME',

FRAME:'AIRFRAME', OPMTRX:0,

KINDFC=0, KINDRM=2,

RNAME='PYLON ROTOR 1 RIGID BODY', RLABL='P R i RB',

JNTDOF=0,

NLOC=I, CEREP=0, ZCJ=3*0.,

NJOINT=0,

NCNXN=I, CCREP=0, ZCJ=3*0., CNXJNT=0, CNXLOC=I,

NSDINT=2, SDICNX=I,I,

SDNAME(1)='PYLON/PYLON ROTOR i', SDLABL(1)='P /PR i',

SDNAME(2)='PYLON ROTOR I/HUB i', SDLABL(2)='PRI/H i',

MASS:0.

&END

::::::::::::::::::::::::::::: ================================================

! Modify existing rigid body components

&NLDEF class='COMPONENT', type='RIGID BODY', name='ROTOR 1 HUB' &END

&NLVAL SDNAME(1)='PYLON ROTOR I/HUB I', SDLABL(1)='P /H i' &END

!

&NLDEF class='COMPONENT', type='RIGID BODY', name='ROTOR 1 SWASHPLATE' LEND

&NLVAL SDNAME(1)='PYLON/SWASHPLATE i', SDLABL='P /SP i' &END

===================================== =======================================

! Add PYLON component

&NLDEF class='COMPONENT', type='RIGID BODY', name='PYLON' LEND

&NLVAL LABEL='PYLON', DEBUG=0,

TMPART:'AIRFRAME',

TNPART='ROTORCRAFT',

FLPART='AIRFRAME',

FRAME='AIRFRAME', OPMTRX=0,

KINDFC=0, KINDRM=2,

RNAME='PYLON RIGID BODY', RLABL='PYLON R',

JNTDOF=6,

NLOC=3, CEREP=3*0, ZEB= 0., 0., 0.,

0., 0., 1.0067,

0., 0., 0.3217,

NJOINT=I, CJREP=0, ZJE=3*0., JNTLOC=I, KINDJ=3, KINDJL=3, KINDJA=3,

AXISL=I,2,3, GAINL=3*I.0 , TYPEL=3*I, JNTEL=I,2,3,

AXISA=I,2,3, GAINA=3*0.0174533, TYPEA=3*I, JNTEA=4,5,6,

NSPRNG=6, KTYPE=6*I, CTYPE=6*I,

KLIN=3*I.E20,3*I.E8, KEQUIV=3*I.E20,3*I.E8,

CLIN=6*0. , CEQUIV=6*0.,

OFFSET=6*0., BIAS=6*0., OPTENS=0,

NCNXN=3, CCREP=3*0, ZCJ=9*0., CNXJNT=I,2*0, CNXLOC=I,2,3,

NSDINT=3, SDICNX=I,2,3, TORQ=3*0,

SDNAME(1)='AIRFRAME/PYLON', SDLABL(1)='AF/P',

SDNAME(2)='PYLON/PYLON ROTOR i', SDLABL(2)='P /PR i',

SDNAME(3)='PYLON/SWASHPLATE I', SDLABL(3)='P /SP i',

NSEN=2, OPDEFN=2*I,

SNAME(1)='HUB MOTION SENSOR', SLABL(1)='HUB SEN',

SNAME(2)='NONROTATING SWASHPLATE LOAD', SLABL(2)='NR SP LD',

LENS=6,6,

KSEN=I2, SENV=6*I,6*2, SENE=I,2,3,4,5,6,1,2,3,4,5,6,

KINDQ=6*2,6*I, IDENTQ=I,2,3,4,5,6,6*3,

QUANT=6*21,3*41,3*42, AXIS=I,2,3,1,2,3,1,2,3,1,2,3,

SCALE=3*1.0,3*0.0174533,6*1.0, OPSCL=I2*0,

SENAME( 1)='HUB MOTION LX', SELABL( 1)='HUB LX',

SENAME( 2)='HUB MOTION LY', SELABL( 2)='HUB LY'

SENAME( 3)='HUB MOTION LZ', SELABL( 3)='HUB LZ',

SENAME( 4)='HUB MOTION AX', SELABL( 4)='HUB AX',

SENAME( 5)='HUB MOTION AY', SELABL( 5)='HUB AY',
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SENAME( 6)=

SENAME( 7)=

SENAME ( 8)=

SENAME( 9)=

S ENAME (10 ) =

SENAME (ii ) =

S ENAME (12 ) =

HUB MOTION AZ', SELABL( 6)='HUB AZ',

NR SP LOAD LX'

NR SP LOAD LY'

NR SP LOAD LZ'

NR SP LOAD AX'

NR SP LOAD AY'

NR SP LOAD AZ'

, SELABL( 7

, SELABL( 8

, SELABL( 9

, SELABL(10

, SELABL(II

, SELABL(12

='NR SP LX',

='NR SP LY',

='NR SP LZ',

='IqR SP AX',

='NR SP AY',

='NR SP AZ',

NCON-I, CNAME: HUB MOTION INPUT', CLABL='HUB MOTN', LENC--6,

OPACT=6*2, CONVKC=6*I, CONEKC=I,2,3,4,5,6,

MASS= 0.

& END

&NLDEF class='RESPONSE', type='RIGID', name:'DOF PYLON RIGID' &END

&NLVAL KINDR=I,

R_NAMEC= 'PYLON' , RNAMEV= 'PYLON RIGID BODY' ,

OPFILT=I, KINDRM=2, REPLIN=I, REPANG=2,

WTCLIN:.05, WTCANG=.02, WTPLIN=.05, WTPANG=.02,

KINDN=3, KINDDN-I, CNREP=4,

CNOM(I, I) = -i., 0., 0.,

CNOM(I,2) = 0., i., 0.,

CNOM(I, 3) = 0., 0., -i.,

ZNOM=-0.1667, 0., -0.8333,

QREF=3*0, QINIT=3*0, QOPSYM=3*0, QTMRED=3*I, QTNRED=3*I, QFLRED=3*I,

PREF=3*0, PINIT=3*0, POPSYM=3*0, PTMRED=3*I, PTNRED=3*I, PFLRED=3*I,

& END

! ==============================================================================

! Modify AIRFRAME normal modes component

&NLDEF class='COMPONENT', type='LINEAR NORMAL MODES', name:'AIRFRAME' &END

&NLVAL ZEB(I,I)=-0.1667, 0., -0.8333,

NSDINT=I, SDICNX=I,

SDNAME (1 ) = 'AIRFRAME/PYLON ', SDLABL (i) = 'AF/P '

&END

! ==============================================================================

! Delete old structural dynamic interfaces

&NLDEF class= 'INTERFACE', type=' SD', name= 'AIRFRAME/AIRFRAME ROTOR 1 ' ,

action= 'delete'

&END

&NLDEF class:'INTERFACE', type='SD', name='AIRFRAME ROTOR I/HUB I',

action= 'delete'

&END

&NLDEF class= 'INTERFACE', type= 'SD', name= 'AIRFRAME/SWASHPLATE 1 ',

action= 'delete'

&END

! ==============================================================================

! Build new structural dynamic interfaces

&NLDEF class= 'INTERFACE ' , type= 'SD', name= 'AIRFRAME/PYLON' &END

&NLVAL LABEL='AF/P', DEBUG=0,

TMPART= 'AIRFRAME ' ,

TNPART= 'ROTORCRAFT ',

FLPART= 'AIRFRAME ' ,

ANAMEC= 'AIRFRAME' , ANAMEV= 'AIRFRAME/PYLON' ,

BNAMEC= 'PYLON' , BNAMEV= 'AIRFRAME/PYLON' ,

KINDSD=I, AXESC=0, OPELIM:I, NXELIM=0

&END

&NLDEF class:'INTERFACE', type:'SD', name:'PYLON/PYLON ROTOR i'

&NLVAL LABEL='P /PR I', DEBUG=0,

TMPART='AIRFRAME',

TNPART='ROTORCRAFT',

FLPART='AIRFRAME',

ANAMEC='PYLON', ANAMEV='PYLON/PYLON ROTOR i',

&END
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BNAMEC:'PYLON ROTOR I', BNAMEV:'PYLON/PYLON ROTOR i',

KINDSD=I, AXESC=0, OPELIM=I, NXELIM=0

&END

&NLDEF class='INTERFACE', type='SD', name:'PYLON ROTOR 1/HUB i' &END

&NLVAL LABEL='PR I/H i', DEBUG=0,

TMPART='ROTOR 1 HUB',

TNPART:'ROTORCRAFT',

FLPART='ROTOR i HUB',

ANAMEC='PYLON ROTOR i', ANAMEV='PYLON ROTOR 1/HUB i',

BNAMEC='ROTOR 1 HUB' , BNAMEV='PYLON ROTOR 1/HUB i',

KINDSD=I, AXESC=0, OPELIM=I, NXELIM-0

&END

&NLDEF class='INTERFACE', type='SD', name='PYLON/SWASHPLATE i' &END

&NLVAL LABEL-'P /SP i', DEBUG=0,

TMPART-'ROTOR i HUB',

TNPART='ROTORCRAFT',

FLPART:'ROTOR 1 HUB',

ANAMEC='PYLON' , ANAMEV:'PYLON/SWASHPLATE i',

BNAMEC='ROTOR 1 SWASHPLATE', BNAMEV='PYLON/SWASHPLATE i',

KINDSD=I, AXESC=0, OPELIM=I, NXELIM=0

&END

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

! Delete old RESPONSEs

&NLDEF class='RESPONSE', type 'RIGID', name='DOF AIRFRAME ROTOR I RIGID BODY',

action='delete'

&END

&NLDEF class='RESPONSE', type='VARIABLE', name:'INT AIRFRAME/SWASHPLATE i',

action='delete'

&END

&NLDEF class='RESPONSE', type='VARIABLE', name='INT AIRFRAME/AIRFRAME ROTOR i',

action='delete'

&END

&NLDEF class='RESPONSE', type='VARIABLE', name='INT AIRFRAME ROTOR 1/HUB i',

action='delete'

&END

!:::=--- =======================================================================

! Create new RESPONSEs

&NLDEF class='RESPONSE', type:'RIGID', name='DOF PYLON ROTOR 1 RIGID BODY'

&END

&NLVAL DEBUG=0, KINDR=I,

RNAMEC-'PYLON ROTOR i',

RNAMEV='PYLON ROTOR 1 RIGID BODY',

OPFILT=I, KINDRM=2, REPLIN=I, REPANG=2,

WTCLIN=.05, WTCANG:.02, WTPLIN=.05, WTPANG=.02,

KINDN=3, KINDDN-I, CNREP:4,

CNOM(I,I)= -i., 0., 0.,

CNOM(I,2)= 0., i., 0.,

CNOM(I,3)= 0., 0., -1.,

ZNOM=-0.1667, 0., -1.84,

QREF=3*0, QINIT=3*0, QOPSYM=3*0, QTMRED=3*I, QTNRED=3*I, QFLRED=3*I,

PREF=3*0, PINIT=3*0, POPSYM=3*0, PTMRED=3*I, PTNRED=3*I, PFLRED=3*I,

&END

!

&NLDEF class:'RESPONSE', type:'VARIABLE', name:'INT PYLON/SWASHPLATE i'

&NLVAL DEBUG=0, KINDR=2,

RNAMEC='',

RNAMEV='PYLON/SWASHPLATE i',

OPFILT:0, MVAR:6, KINDN:3,

&END
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XNOM=6*0., WTCONV=3*I.3,3*0.6, WTPERT=3*I.3,3*0.6, WTMODE=6*0.,

XREF=6*0., XINIT=6*0., TMRED=6*I, TNRED=6*I, FLRED=6*I, OPSYM=6*0

&END

!

&NLDEF class='RESPONSE', type='VARIABLE', name='INT PYLON/PYLON ROTOR I' &END

&NLVAL DEBUG:0, KINDR=2,

RNAMEC='',

RNAMEV='PYLON/PYLON ROTOR i',

OPFILT:0, MVAR=6, KINDN=3,

XNOM=6*0., WTCONV=3*I.3,3*0.6, WTPERT=3*I.3,3*0.6, WTMODE=6*0.,

XREF=6*0., XINIT=6*0., TMRED=6*I, TNRED=6*I, FLRED=6*I, OPSYM=6*0

&END

&NLDEF class='RESPONSE', type='VARIABLE', name='INT PYLON ROTOR 1/HUB i' &END

&NLVAL DEBUG=0, KINDR:2,

RNAMEC='',

RNAMEV='PYLON ROTOR 1/HUB i',

OPFILT=0, MVAR=6, KINDN=3,

XNOM:6*0., WTCONV=3*I.3,3*0.6, WTPERT=3*I.3,3*0.6, WTMODE=6*0.,

XREF=6*0., XINIT=6*0., TMRED=6*I, TNRED=6*I, FLRED=6*I, OPSYM=6*0

&END

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

! Hub motion input/output and connections

&NLDEF class='OUTPUT', type:'', name='HUB MOTION SENSOR' &END

&NLVAL KINDY=4, YNAMEC='PYLON', YNAMEV='HUB MOTION SENSOR',

TMPART='ROTOR i HUB LOAD SENSOR',

TNPART='NO SOLUTION',

FLPART='NO SOLUTION',

NTPRNT=I, NHPRNT=I, MTIME=24, MHARM=I0, OPHARM:I

&END

&NLDEF class='RESPONSE', type='VARIABLE', name='OUT HUB MOTION SENSOR' &END

&NLVAL KINDR=4, RNAMEV='HUB MOTION SENSOR',

MVAR=6, KINDN=3, XNOM=6*0., WTMODE=6*0., XREF:6*0., XINIT=6*0.,

OPSYM=6*0, WTCONV=3*0.05,3*I.0, WTPERT=3*0.05,3*I.0,

TMRED=6*I, TNRED=6*I, FLRED=6*I

&END

!

&NLDEF class='INPUT', type='', name='HUB MOTION LX HHC INPUT' &END

&NLVAL LABEL='LX HHC', NCNXN=I,

FNAMEC='HUB MOTION OSC AMP LX',

FNAMEV='HUB MOTION LX HHC INPUT',

LENGTH=I7,

UENAME='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C' '5S' '6C' '6S' '7C' '7S' '8C' '8S'
, , , , , , , ,

UELABL='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', '6C', '6S', '7C', '7S', '8C', '8S',

&END

&NLDEF class='RESPONSE', type='VAR', name='INP HUB MOTION LX HHC INPUT'

&NLVAL KINDR=3, RNAMEV='HUB MOTION LX HHC INPUT',

MVAR=I7, KINDN:3, XNOM=I7*0., WTMODE=I7*0., XREF:I7*0.,

&END

&END

!

Axial hub motions are set in here -- MEAN, IPC, IPS, 2PC, 2PS ....

XINIT=0., 6"0., 0., 0., 6"0., 0., 0.,

OPSYM=I7*0, WTCONV=I7*0.05, WTPERT=I7*0.05,

TMRED=I7*I, TNRED=I7*I, FLRED:I7*I
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&NLDEF class:'COMPONENT', type:'FOURIER', name:'HUB MOTION OSC AMP LX' &END

&NLVAL LABEL='HUB MOTN', MHARM=8, NBHARM=0, NEHARM=8, TYPEA=2,

PERIOD-'ROTOR i', AZREF=0., GAIN=I.0, OPDRVF=0, OPDRVX=0,

FONAME='HUB MOTION LX HHC INPUT', POLABL='LX HHC',

XNAME='HUB MOTION OSC AMP LX' , XLABL='LX HHC'

&END

!

&NLDEF class-'INTERFACE', type='IO', name='HUB MOTION OSC AMP LX' &END

&NLVAL LABEL-'AMP LX',

TMPART='ROTOR 1 CONTROL', TMPASS=I,

TNPART='NO SOLUTION',

FLPART='NO SOLUTION',

XNAMEC='HUB MOTION OSC AMP LX',

XNAMEV='HUB MOTION OSC AMP LX',

NCNXN=I,

FNAMEC='HUB MOTION', FNAMEV='HUB MOTION OSC AMP LX'

&END

&NLDEF class 'RESPONSE', type-'VARIABLE', name='INT HUB MOTION OSC AMP LX' &END

&NLVAL KINDR=2, RNAMEV:'HUB MOTION OSC AMP LX',

MVAR=I, KINDN=3, XNOM=0., WTMODE=0., XREP=0., XINIT=0.,

OPSYM=0, WTCONV=0.05, WTPERT=0.05,

TMRED=I, TNRED=I, FLRED=I

&END

&NLDEF class='INPUT', type:'', name='HUB MOTION LY HHC INPUT' &END

&NLVAL LABEL='LY HHC', NCNXN=I,

FNAMEC='HUB MOTION OSC AMP LY',

FNAMEV='HUB MOTION LY HHC INPUT'

LENGTH=f7,

UENAME='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', 6C', '6S', '7C', '7S', '8C', '8S',

UELABL='MEAN', 'IC', 'IS', 2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', 6C' '6S', '7C', '7S', '8C', '8S',

&END

&NLDEF class-'RESPONSE', type='VAR , name='INP HUB MOTION LY HHC INPUT'

&NLVAL KINDR=3, RNAMEV='HUB MOTION LY HHC INPUT',

MVAR-17, KINDN=3, XNOM=I7*0., WTMODE=I7*0., XREF=I7*0.,

&END

Side hub motions are set in here -- MEAN, IPC, IPS, 2PC, 2PS ....

XINIT-0., 6"0., 0., 0., 6*0., 0., 0.,

OPSYM-17*0, WTCONV=I7*0.05, WTPERT=I7*0.05,

TMRED=I7*I, TNRED-17*I, FLRED=I7*I

&END

&NLDEF class='COMPONENT', type='FOURIER', name='HUB MOTION OSC AMP LY'

&NLVAL LABEL-'HUB MOTN', MHARM=8, NBHARM=0, NEHARM=8, TYPEA=2,

PERIOD='ROTOR i', AZREF=0., GAIN=I.0, OPDRVF=0, OPDRVX=0,

FONAME-'HUB MOTION LY HHC INPUT', FOLABL='LY HHC',

XNAME-'HUB MOTION OSC AMP LY' , XLABL='LY HHC'

&END

&NLDEF class='INTERFACE', type-'IO', name='HUB MOTION OSC AMP LY' &END

&NLVAL LABEL='AMP LY',

TMPART='ROTOR 1 CONTROL', TMPASS=I,

TNPART='NO SOLUTION',

FLPART-'NO SOLUTION',

XNAMEC='HUB MOTION OSC AMP LY',

&END
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XNAMEV:'HUB MOTION OSC AMP LY',

NCNXN:I,

FNAMEC:'HUB MOTION', FNAMEV:'HUB MOTION OSC AMP LY'

&END

&NLDEF class:'RESPONSE', type='VARIABLE', name='INT HUB MOTION OSC AMP LY' &END

&NLVAL KINDR=2, RNAMEV='HUB MOTION OSC AMP LY',

MVAR=I, KINDN=3, XNOM=0., WTMODE=0., XREF=0., XINIT=0.,

OPSYM=0, WTCONV=0.05, WTPERT=0.05,

TMRED=I, TNRED=I, FLRED=I

&END

&NLDEF class:'INPUT', type:'', name='HUB MOTION LZ HHC INPUT' &END

&NLVAL LABEL:'LZ HHC', NCNXN=I,

FNAMEC='HUB MOTION OSC AMP LZ',

FNAMEV='HUB MOTION LZ HHC INPUT',

LENGTH=I7,

UENAME='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', '6C', '6S', '7C', '7S', '8C', '8S',

UELABL='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', '6C', '6S', '7C', '7S', '8C', '8S',

&END

&NLDEF class='RESPONSE', type-'VAR', name='INP HUB MOTION LZ HHC INPUT' &END

&NLVAL KINDR=3, RNAMEV:'HUB MOTION LZ HHC INPUT',

MVAR=I7, KINDN=3, XNOM=I7*0., WTMODE=I7*0., XREF=I7*0.,

Normal hub motions are set in here -- MEAN, IPC, IPS, 2PC, 2PS ....

XINIT=0., 6"0., 0., 0., 6"0., 0., 0.,

OPSYM=I7*0, WTCONV=I7*0.05, WTPERT=I7*0.05,

TMRED=I7*I, TNRED=I7*I, FLRED=I7*I

&END

!

&NLDEF class='COMPONENT', type='FOURIER', name='HUB MOTION OSC AMP LZ' &END

&NLVAL LABEL='HUB MOTN', MHARM:8, NBHARM=0, NEHARM=8, TYPEA=2,

PERIOD='ROTOR i', AZREF:0., GAIN=I.0, OPDRVF=0, OPDRVX=0,

FONAME='HUB MOTION LZ HHC INPUT', FOLABL='LZ HHC'

XNAME='HUB MOTION OSC AMP LZ' , XLABL='LZ HHC'

&END

!

&NLDEF class='INTERFACE', type='IO', name='HUB MOTION OSC AMP LZ' &END

&NLVAL LABEL:'AMP LZ',

TMPART='ROTOR 1 CONTROL', TMPASS=I,

TNPART='NO SOLUTION',

FLPART='NO SOLUTION',

XNAMEC='HUB MOTION OSC AMP LZ',

XNAMEV='HUB MOTION OSC AMP LZ',

NCNXN=I,

FNAMEC='HUB MOTION', FNAMEV='HUB MOTION OSC AMP LZ'

&END

!

&NLDEF class='RESPONSE', type='VARIABLE', name='INT HUB MOTION OSC AMP LZ' &END

&NLVAL KINDR=2, RNAMEV='HUB MOTION OSC AMP LZ',

MVAR=I, KINDN=3, XNOM=0., WTMODE=0., XREF=0., XINIT=0.,

OPSYM=0, WTCONV=0.05, WTPERT=0.05,

TMRED=I, TNRED=I, FLRED=I

&END

!
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&NLDEF class='INPUT', type='', name='HUB MOTION AX HHC INPUT' &END

&NLVAL LABEL='AX HHC', NCNXN-I,

FNAMEC='HUB MOTION OSC AMP AX',

FNAMEV='HUB MOTION AX HHC INPUT',

LENGTH=f7,

UENAME-'MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', '6C', '6S', '7C', '7S', '8C', '8S',

UELABL='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', 6C', '6S', '7C', '7S', '8C', '8S',

&END

&NLDEF class-'RESPONSE', type='VAR', name='INP HUB MOTION AX HHC INPUT'

&NLVAL KINDR=3, RNAMEV='HUB MOTION AX HHC INPUT',

MVAR=I7, KINDN=3, XNOM=I7*0., WTMODE=I7*0., XREF=I7*0.,

&END

Roll hub motions are set in here -- MEAN, IPC, IPS, 2PC, 2PS ....

Must input some Side motion if want pure roll at hub

XINIT=0., 6"0., 0., 0., 6"0., 0., 0.,

OPSYM=I7*0, WTCONV=I7*0.05, WTPERT:I7*0.05,

TMRED=I7*I, TNRED=I7*I, FLRED=I7*I

&END

&NLDEF class='COMPONENT', type:'FOURIER', name='HUB MOTION OSC AMP AX' &END

&NLVAL LABEL 'HUB MOTN', MHARM-8, NBHARM=0, NEHARM=8, TYPEA=2,

PERIOD-'ROTOR i', AZREF=0., GAIN=I.0, OPDRVF=0, OPDRVX=0,

FONAME-'HUB MOTION AX HHC INPUT', FOLABL='AX HHC',

XNAME='HUB MOTION OSC AMP AX' , XLABL='AX HHC'

&END

&NLDEF class='INTERFACE', type='IO', name='HUB MOTION OSC AMP AX' &END

&NLVAL LABEL='AMP AX',

TMPART='ROTOR i CONTROL', TMPASS=I,

TNPART-'NO SOLUTION',

FLPART='NO SOLUTION',

XNAMEC= HUB MOTION OSC AMP AX',

XNAMEV- HUB MOTION OSC AMP AX',

NCNXN-I

FNAMEC= HUB MOTION', FNAMEV='HUB MOTION OSC AMP AX'

&END

!

&NLDEF class='RESPONSE', type='VARIABLE', name='INT HUB MOTION OSC AMP AX' &END

&NLVAL KINDR=2, RNAMEV='HUB MOTION OSC AMP AX',

MVAR=I, KINDN=3, XNOM=0., WTMODE=0., XREF=0., XINIT=0.,

OPSYM-0, WTCONV=0.05, WTPERT=0.05,

TMRED=I, TNRED=I, FLRED=I

&END

&NLDEF class='INPUT', type:'', name='HUB MOTION AY HHC INPUT' &END

&NLVAL LABEL='AY HHC', NCNXN=I,

FNAMEC='HUB MOTION OSC AMP AY',

FNAMEV='HUB MOTION AY HHC INPUT',

LENGTH=I7,

UENAME='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', '6C', '6S', '7C', '7S', '8C', '8S',

UELABL 'MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S' '6C', '6S', '7C', '7S', '8C', '8S',

&END

!
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&NLDEF class='RESPONSE', type='VAR', name='INP HUB MOTION AY HHC INPUT'

&NLVAL KINDR=3, RNAMEV='HUB MOTION AY HHC INPUT',

MVAR=I7, KINDN=3, XNOM=I7*0., WTMODE=I7*0., XREF=I7*0.,

!

!

!

&END

Pitch hub motions are set in here -- MEAN, IPC, IPS, 2PC, 2PS ....

Must input some Axial motion if want pure roll at hub

XINIT=0., 6*0., 0., 0., 6*0., 0., 0.,

OPSYM=I7*0, WTCONV=I7*0.05, WTPERT=I7*0.05,

TMRED=I7*I, TNRED=I7*I, FLRED=I7*I

&END

&NLDEF class='COMPONENT', type='FOURIER', name='HUB MOTION OSC AMP AY' &END

&NLVAL LABEL='HUB MOTN', MHARM:8, NBHARM=0, NEHARM:8, TYPEA:2,

PERIOD='ROTOR I', AZREF:0., GAIN=I.0, OPDRVF:0, OPDRVX=0,

FONAME='HUB MOTION AY HHC INPUT', FOLABL='AY HHC',

XNAME='HUB MOTION OSC AMP AY' , XLABL='AY HHC'

&END

&NLDEF class='INTERFACE', type='IO', name='HUB MOTION OSC AMP AY' &END

&NLVAL LABEL='AMP AY',

TMPART='ROTOR 1 CONTROL', TMPASS=I,

TNPART='NO SOLUTION',

FLPART='NO SOLUTION',

XNAMEC='HUB MOTION OSC AMP AY',

XNAMEV='HUB MOTION OSC AMP AY',

NCNXN=I,

FNAMEC='HUB MOTION', FNAMEV='HUB MOTION OSC AMP AY'

&END

&NLDEF class='RESPONSE', type='VARIABLE', name='INT HUB MOTION OSC AMP AY' &END

&NLVAL KINDR=2, RNAMEV='HUB MOTION OSC AMP AY',

MVAR=I, KINDN=3, XNOM=0., WTMODE:0., XREF=0., XINIT=0.,

OPSYM=0, WTCONV=0.05, WTPERT=0.05,

TMRED=I, TNRED=I, FLRED=I

&END

!

&NLDEF class='INPUT', type='', name='HUB MOTION AZ HHC INPUT' &END

&NLVAL LABEL='AZ HHC', NCNXN=I,

FNAMEC='HUB MOTION OSC AMP AZ',

FNAMEV='HUB MOTION AZ HHC INPUT',

LENGTH=I7,

UENAME='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', '6C', '6S', '7C', '7S', '8C', '8S',

UELABL='MEAN', 'IC', 'IS', '2C', '2S', '3C', '3S', '4C', '4S',

'5C', '5S', '6C', '6S', '7C', '7S', '8C', '8S',

&END

&END

&NLDEF class='RESPONSE', type='VAR', name='INP HUB MOTION AZ HHC INPUT'

&NLVAL KINDR=3, RNAMEV='HUB MOTION AZ HHC INPUT',

MVAR=I7, KINDN=3, XNOM=I7*0., WTMODE=I7*0., XREF=I7*0.,

&END

Yaw hub motions are set in here -- MEAN, IPC, IPS, 2PC, 2PS ....

XINIT=0., 6*0., 0., 0., 6*0., 0., 0.,

OPSYM=I7*0, WTCONV:I7*0.05, WTPERT:I7*0.05,

TMRED=I7*I, TNRED=I7*I, FLRED=I7*I
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&NLDEF class:'COMPONENT', type:'FOURIER', name='HUB MOTION OSC AMP AZ' &END

&NLVAL LABEL='HUB MOTN', MHARM=8, NBHARM=0, NEHARM:8, TYPEA-2,

PERIOD='ROTOR i', AZREF=0., GAIN=I.0, OPDRVF:0, OPDRVX:0,

FONAME='HUB MOTION AZ HHC INPUT', FOLABL:'AZ HHC',

XNAME:'HUB MOTION OSC AMP AZ' , XLABL='AZ HHC'

&END

&NLDEF class='INTERFACE', type='IO', name='HUB MOTION OSC AMP AZ' &END

&NLVAL LABEL='AMP AZ',

TMPART='ROTOR 1 CONTROL', TMPASS=I,

TNPART='NO SOLUTION',

FLPART='NO SOLUTION',

XNAMEC='HUB MOTION OSC AMP AZ',

XNAMEV='HUB MOTION OSC AMP AZ',

NCNXN=I,

FNAMEC='HUB MOTION', FNAMEV='HUB MOTION OSC AMP AZ'

&END

&NLDEF class='RESPONSE', type='VARIABLE', name='INT HUB MOTION OSC AMP AZ' LEND

&NLVAL KINDR=2, RNAMEV='HUB MOTION OSC AMP AZ',

MVAR=I, KINDN-3, XNOM=0., WTMODE=0., XREF-0., XINIT=0.,

OPSYM 0, WTCONV=0.05, WTPERT=0.05,

TMRED-I, TNRED=I, FLRED=I

&END

&NLDEF class-'COMPONENT', type='DE', name-'HUB MOTION' &END

&NLVAL LABEL='HUB MOTN',OPMTRX-I, FORMEQ=0, INPTEQ=0, INPTDS=I,

XNAME='HUB MOTION', XLABL='HUB MOTN', LENX=6,

&END

NCON=6,

CNAME(1)='HUB MOTION OSC AMP LX'

CNAME(2)='HUB MOTION OSC AMP LY'

CNAME(3)='HUB MOTION OSC AMP LZ'

CNAME(4):'HUB MOTION OSC AMP AX'

CNAME(5)-'HUB MOTION OSC AMP AY'

CNAME(6)='HUB MOTION OSC AMP AZ'

OPCON=I, LENV=6, CONV=I,2,3,4,5,

CLABL(1):'LX'

CLABL(2):'LY'

CLABL(3)='LZ'

CLABL(4)='AX'

CLABL(5)='AY'

CLABL(6)='AZ'

, CONE=6*1

LENC

LENC

LENC

LENC

LENC

LENC

&END

i) i,

2) =i,

3) =i,

4) =i,

5) -i,

6) =I,

&NLDEF class-'INTERFACE', type:'IO', name='HUB MOTION INPUT'

&NLVAL LABEL-'HUB MOTN',

TMPART-'ROTOR 1 CONTROL', TMPASS=2,

TNPART='NO SOLUTION',

FLPART='NO SOLUTION',

XNAMEC='HUB MOTION', XNAMEV='HUB MOTION',

NCNXN-I,

FNAMEC='PYLON', FNAMEV='HUB MOTION INPUT'

LEND

!

&NLDEF class-'RESPONSE', type='VARIABLE', name='HUB MOTION INPUT'

&NLVAL KINDR=2, RNAMEV='HUB MOTION INPUT',

MVAR=6, KINDN=3, XNOM=0., WTMODE=0., XREF=0., XINIT=0.,

OPSYM-6*0, WTCONV=3*0.05,3*0.02, WTPERT=3*0.05,,3*0.02,

TMRED=6*I, TNRED=6*I, FLRED=6*I

&END

&NLDEF class-'OUTPUT', type='', name='OUT HUB MOTION INPUT' LEND

&NLVAL KINDY=4, YNAMEC='HUB MOTION', YNAMEV='HUB MOTION',

TMPART='ROTOR 1 HUB LOAD SENSOR',

TNPART='NO SOLUTION',

FLPART-'NO SOLUTION',

&END
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NTPRNT:I, NHPRNT:I, MTIME:24, MHARM:I0, 0PHARM:I

&END

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

&NLDEF action='end of core' &END

'endofinput'
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